1 |
Schneider R . Convex Bodies:The Brunn-Minkowski Theory. Cambrige: Cambridge Univ Press, 2014
|
2 |
Gardner R J . Geometric Tomography. New York: Cambridge Univ Press, 1996
|
3 |
Burago Y D , Zalgaller V A . Geometric Inequalities. Berlin: Springer-Verlag, 1988
|
4 |
Castillon P . Submanifolds, isoperimetric inequalities and optimal transportation. J Func Anal, 2010, 259: 79- 103
doi: 10.1016/j.jfa.2010.03.001
|
5 |
Pan S L , Xu H P . Stability of a reverse isoperimetric inequality. J Math Anal Appl, 2009, 350: 348- 353
doi: 10.1016/j.jmaa.2008.09.047
|
6 |
Milman E , Sodin S . An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies. J Func Anal, 2008, 254: 1235- 1268
doi: 10.1016/j.jfa.2007.12.002
|
7 |
赵长健. 体积差的等周不等式. 数学年刊A辑, 2011, 32: 473- 480
|
|
Zhao C J . Isoperimetric inequalities for volume differences. Chinese Ann Math Ser A, 2011, 32: 473- 480
|
8 |
Leng G S . The Brunn-Minkowski inequality for volume differences. Adv Appl Math, 2004, 32: 615- 624
doi: 10.1016/S0196-8858(03)00095-2
|
9 |
Lutwak E . Dual mixed volumes. Pacific J Math, 1975, 58: 531- 538
doi: 10.2140/pjm.1975.58.531
|
10 |
Lutwak E . Intersection bodies and dual mixed volumes. Adv Math, 1988, 71: 232- 261
doi: 10.1016/0001-8708(88)90077-1
|
11 |
Mitrinovi? D S . Analytic Inequalities. Berlin: Springer-Verlag, 1970
|
12 |
马磊, 曾春娜. 关于Wullf流情形下的等周不等式. 数学物理学报, 2015, 35A (2): 306- 311
|
|
Ma L , Zeng C . Remark on isoperimetric inequalities in the Wullf case. Acta Math Sci, 2015, 35A (2): 306- 311
|