[1] Ambroseti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14:349-381 [2] Georgiev V, Todorova G. Existence of solutions of the wave equations with nonlinear damping and source terms. J Differ Equa 1994, 109 (2):295-308 [3] Gazzola F, Weth T. Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level. Differ Integral Equ, 2005, 18:961-990 [4] Gazzola F, Squassina M. Global solutions and finite time blow-up for damped semilinear wave equations. Ann I H Poincaré-AN, 2006, 23:185-207 [5] Gerbi S, Houari B S. Exponential decay for solutions to semilinear damped wave equation. Discrete Contin Dyn Syst Ser S, 2012, 5:559-566 [6] Ikehata R, Suzuki T. Stable and unstable sets for evolution equations of parabolic and hyperbolic type. Hiroshima Math J, 1996, 26:475-491 [7] Kutev N, Kolkovska N, Dimova M. Global existence of Caucy problem for Boussinesq paradigm equation. Computer Math Appli, 2013, 65:500-511 [8] Kutev N, Kolkovska N, Dimova M. Finite time blow up of the solutions to Boussinesq equation with linear restoring force and arbitrary positive energy. Acta Math Sci, 2016, 36:881-890 [9] Lions J L, Magenes E. Non-Homogeneous Boundary Value Problems and Applications I. New York:Springer-Verleag, 1972 [10] Liu Y. On potiential wells and vacuum isolating of solution for semilinear wave equations. J Differ Equa, 2003, 192:155-169 [11] Levine H A. Some additional remarks on the nonexistence of global solutions to nonlinear equations. SIAM J Math Anal, 1974, 5:138-146 [12] Levine H A. Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=-Au+f(u). Trans Amer Math Soc, 1974, 192:1-21 [13] Ohta M. Remarks on blow-up of solutions for nonlinear evolution equations of second order. Adv Math Sci Appl, 19988:901-910 [14] Payne L E, Sattinger D H. Sadle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22:273-303 [15] Sattinger D. On global solution of nonlinear hyperbolic equations. Arch Rat Mech Anal, 1968, 30:148-172 [16] Sun L, Guo B, Gao W. A lower bound for the blow-up time to a damped semilinear wave equation. Appl Math Lett, 2014, 37:22-25 [17] Su X, Wang S. The initial-boundary value problem for the generalized double dispersion equation. Z Angew Math Phys, 2017, 68:53 [18] Vitillaro E. Global nonexistence theorems for a class of evolution equations with dissipation. Arch Ration Mech Anal, 1999, 149 (2):155-182 [19] Wang S, Su X. Global existence and nonexistence of the initial-boundary value problem for the dissipative Boussinesq equation. Nonlinear Anal, 2016, 134:164-188 [20] Xu R, Su J. Global existence and finite time bow-up for a class of semilinear pseudo-parabolic equations. J Funct Anal, 2013, 264:2732-2763 [21] Xu R, Ding Y. Global solutions and finite time blow up for damped Klein-Gordon equation. Acta Math Sci, 2013, 33B(3):643-652 [22] Zhou J. Lower bounds for blow-up time of two nonlinear wave equations. Appl Math Lett, 2015, 45:64-68 |