[1] Ge S S, Zhang S, He W. Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance. Int J Control, 2011, 84(5):947-960
[2] He W, Ge S S, How B V E, Choo Y S, Hong K. Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica, 2011, 47(4):722-732
[3] He W, Sun C, Ge S S. Top tension control of a flexible marine riser by using integral-barrier Lyapunov function. IEEE/ASME Trans Mechatronics, 2015, 20(2):497-505
[4] He W, Ge S S. Vibration control of a flexible beam with output constraint. IEEE Trans Ind Electron, 2015, 62(8):5023-5030
[5] Timoshenko S. Vibration Problems in Engineering. New York:Van Norstrand, 1955
[6] Aldraihem O J, Wetherhold R C, Singh T. Intelligent beam structures:Timoshenko theory vs. Euler-Bernoulli theory. 1996, DOI:10.1109/CCA. 1996. 559047
[7] Queiroz M S, Dawson D M, Nagarkatti S P, Zhang F. Lyapunov-Based Control of Mechanical Systems. Boston:Birkhaüser, 2000
[8] Kim J U, Renardy Y. Boundary control of the Timoshenko beam. SIAM J Control Optim, 1987, 25(6):1417-1429
[9] Feng D X, Xu G Q, Yung S P. Riesz basis property of Timoshenko beams with boundary feedback control. Int J Math Math Sciences, 2003, 2003(28):1807-1820
[10] Xu G Q, Feng D X. The Riesz basis property of a Timoshenko beam with boundary feedback and applicationn. IMA J Appl Math, 2002, 67(4):357-370
[11] Xu G Q. Boundary feedback expoential stablization of a Timoshenko beam with both ends free. Int J Control, 2005, 78(4):286-297
[12] Zhang F, Dawson D M, Queiroz M S, Vedagarbha P. Boundary control of the Timoshenko beam with free-end mass/inertial dynamics. 1997, DOI:10.1109/CDC.1997.650623
[13] Guo W, Guo B Z. Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance. IEEE Trans Autom Control, 2003, 58(7):1631-1642
[14] Krstic M. Adaptive control of an anti-stable wave PDE. Dyn Continuous Discrete Impulsive Syst Series A:Math Analysis, 2010, 17:853-882
[15] Guo B Z, Kang W. Lyapunov approach to the boundary stabilisation of a beam equation with boundary disturbance. Int J Control, 2014, 87(5):925-939
[16] Guo B Z, Kang W. The Lyapunov approach to the boundary stabilisation of an anti-stable one-dimension wave equation with boundary disturbance. Int J Robust Nonlinear Control, 2014, 24:54-69
[17] Guo B Z, Jin F F. The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance. Automatica, 2013, 49(9):2911-2918
[18] Qi X H, Li J, Xia Y Q, Gao Z Q. On the robust stability of active disturbance rejection control for SISO systems. Circ Syst Signal Process, 2016, DOI:10.1007/s00034-016-0302y
[19] Guo B Z, Zhao Z L. Active disturbance rejection control:Theoretical perspectives. Commun Inform Syst, 2015, 15(3):361-421
[20] Utklin V I. Sliding Modes in Control and Optimization. Berlin:Springer Verlag, 1992
[21] Orlov Y V. Discontinuous unit feedback control of uncertain infinite dimensional systems. IEEE Trans Autom Control, 2000, 45(5):834-843
[22] Orlov Y V. Discontinuous Systems-Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. New York:Springer, 2009
[23] Levaggi L. Sliding modes in Banach spaces. Differ Integr Equas, 2002, 15(2):167-189
[24] Cheng M B, Radisavljevic V, Su W C. Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica, 2011, 47(2):381-387
[25] Pisano A, Orlov Y V, Usai E. Tracking control of the uncertain heat and wave equation via power-fractional and sliding-model techniques. SIAM J Control Optim, 2011, 49(2):363-382
[26] Pisan A, Orlov Y V. Boundary second-order sliding-mode control of an uncertain heat process with unbounded matched perturbation. Automatica, 2012, 48(8):768-1775
[27] Shi D H, Feng D X. Exponential decay of Timoshenko beam with locally distributed feedback. IMA J Math Control Inform, 2001, 18(3):395-403
[28] Barbu V. Nonlinear Differential Equations of Monotone Types in Banach Spaces. New York:Springer, 2010
[29] Guo B Z, Jin F F. Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance. IEEE Trans Autom Control, 2015, 60(3):824-830
[30] He W, Ge S S. Boundary output-feedback stabilization of a Timoshenko beam using disturbance observer. IEEE Trans Ind Electron, 2013, 60(11):5186-5194 |