数学物理学报 ›› 2016, Vol. 36 ›› Issue (5): 997-1009.

• 论文 • 上一篇    下一篇

基于向前方程的平稳分布参数估计

侯振挺, 马忆, 刘路   

  1. 中南大学数学与统计学院 长沙 410000
  • 收稿日期:2015-12-14 修回日期:2016-06-21 出版日期:2016-10-26 发布日期:2016-10-26
  • 通讯作者: 刘路,E-mail:g.jiayi.liu@gmail.com E-mail:g.jiayi.liu@gmail.com
  • 作者简介:刘路,E-mail:g.jiayi.liu@gmail.com
  • 基金资助:

    国家自然科学基金(11301548)资助

Estimating Parameters of Stationary Distribution Using Forward Equation

Hou Zhenting, Ma Yi, Liu Lu   

  1. Department of Mathematics and Statistics, Central South University, Changsha 410000
  • Received:2015-12-14 Revised:2016-06-21 Online:2016-10-26 Published:2016-10-26
  • Supported by:

    Supported by the NSFC (11301548)

摘要:

该文研究利用随机微分方程的平稳分布满足的微分方程给出平均场随机微分方程的参数估计方法dX(t)=b(μNθ)dt+σ(X(t))dB(t),其中θ是待估计的参数.μN是N个个体的经验分布.b(μ,θ)关于μμ=p处附近(τ-拓扑)连续.其中p是该过程的唯一平稳分布.特别地,该文研究以下模型的参数估计问题dX(t)=((X(t))+b<F,μ(t)>)dt+σ(X(t))dB(t),其中a,b是有待估计的模型的参数.该文研究存在平稳分布时的参数估计问题.而数据则是若干(少量)时刻上数据点的经验分布,这些经验分布由很多个个体的数据构成.

关键词: 平均场随机过程, 向前方程, 参数估计

Abstract:

In this paper we give an estimation of the parameters of the stationary distribution of some mean field diffusion process using the differential equations of that distribution. The mean field stochastic process involved is dX(t)=b(μN,θ)dt+σ(X(t))dB(t), where θ is parameters to be estimated. μN is the empirical distribution of the N subjects consisting the mean field stochastic process. b(μ,θ) is continuous wrt μ at μ=p(τ-topology). Where p is the unique stationary distribution of the process. We restrict ourself to the study of the parameter estimation problem of the following model dX(t)=((X(t))+b<F,μ(t)>)dt+σ(X(t))dB(t), where a,b are parameters to be estimated. The data is the empirical distribution of large amount of subjects consisting the process on several time points.

Key words: Meanfield stochastic process, Kolmogorov forward equation, Parameter estimation

中图分类号: 

  • O212.1