数学物理学报 ›› 2016, Vol. 36 ›› Issue (5): 958-964.

• 论文 • 上一篇    下一篇

带具有耗散梯度项的p-Laplace方程解的爆破问题

凌征球1, 王泽佳2   

  1. 1. 玉林师范学院数学与统计学院 广西玉林 537000;
    2. 江西师范大学数学与信息科学学院 南昌 330022
  • 收稿日期:2015-12-05 修回日期:2016-06-13 出版日期:2016-10-26 发布日期:2016-10-26
  • 作者简介:凌征球,E-mail:lingzq00@163.com
  • 基金资助:

    国家自然科学基金(11461076,11361029)、广西高校科学技术研究重点项目(ZD2014106)和江西省自然科学基金(20142BAB211001)资助

Blow-Up Questions of Solutions to a Class of p-Laplace Equation with Dissipative Gradient Term

Ling Zhengqiu1, Wang Zejia2   

  1. 1. School of Mathematics and Statistics, Yulin Normal University, Guangxi Yulin 537000;
    2. College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022
  • Received:2015-12-05 Revised:2016-06-13 Online:2016-10-26 Published:2016-10-26
  • Supported by:

    Supported by the NSFC (11461076, 11361029), the Universities and Colleges Research Foundation of Guangxi Province (ZD2014106) and Giangxi Provincial Nature Science Foundation (20142BAB211001)

摘要:

该文研究具有耗散梯度项的一类p-Laplace方程的爆破现象.借助于合适定义的辅助函数和由此产生的一阶微分不等式,分别给出了方程的解爆破与不爆破的条件.另外,当方程的解发生爆破时,还给出了爆破时间的下界估计.

关键词: 耗散梯度, p-Laplace方程, 爆破, 爆破时间下界

Abstract:

This paper considers a type of p-Laplace equation with dissipative gradient term. By means of suitable defined auxiliary functions and resulting the first-order differential inequalities, the conditions which ensure that blow-up occurs or does not occur are given. In addition, the lower bound for blow-up time is also determined if blow-up occurs.

Key words: Dissipative gradient, p-Laplace equation, Blow-up, Lower bound for the blow-up time

中图分类号: 

  • O175.8