数学物理学报 ›› 2011, Vol. 31 ›› Issue (2): 401-409.

• 论文 • 上一篇    下一篇

非线性分数阶微分方程边值问题正解的存在性

许晓婕1,2, 孙新国1, 吕炜1   

  1. 1.中国石油大学(华东) 数学与计算科学学院 山东 东营 257061|2.东北师范大学 数学与统计学院 长春 130024
  • 收稿日期:2009-03-05 修回日期:2010-04-20 出版日期:2011-04-25 发布日期:2011-04-25
  • 基金资助:

    中国石油大学(华东)基础研究基金(y070815)资助

Existence of Positive Solutions for |Boundary Value Problems with Nonlinear Fractional Differential Equations

 XU Xiao-Jie, SUN Xin-Guo, LV Wei   

  1. 1.School of Mathematics and Computational Science, China University of Petroleum (East China), Dongying 257061|2.School of Mathematics and Statistics, Northeast Normal University, Changchun 130024
  • Received:2009-03-05 Revised:2010-04-20 Online:2011-04-25 Published:2011-04-25
  • Supported by:

    中国石油大学(华东)基础研究基金(y070815)资助

摘要:

该文研究了下面分数阶微分方程边值问题格林函数的相关性质
Dα0+u(t)=f(t, u(t)), 0<t<1, 
u(0)=u(1)=u'(0)=u'(1)=0,
其中3<α≤4 是实数, Dα0+是标准的Riemann-Liouville微分,  f: [0,1]×[0, ∞)→[0, ∞) 连续. 应用格林函数的性质构造了锥, 从而应用一些不动点定理得到了正解的存在性. 

关键词: 分数阶微分方程, 边值问题, 正解, 分数阶格林函数, 不动点定理

Abstract:

In this paper, the authors  consider the properties of Green's function for the nonlinear fractional differential equation boundary-value problem
Dα0+u(t)=f(t, u(t)), 0<t<1, 
u(0)=u(1)=u'(0)=u'(1)=0,
where 3<α≤4 is a real number, and Dα0+ is the standard Riemann-Liouville differentiation, and f: [0,1]×[0, ∞)→[0, ∞) is continuous.
 As an application of Green's function, the authors give some multiple positive solutions for nonlinear by means of some fixed-point theorem on cones.

Key words: Fractional differential equation, Boundary-value problem, Positive solution, Fractional Green’s function, Fixed-point theorem

中图分类号: 

  • 34B18