[1] Bényi A, Grafakos L, Gröchenig K, Okoudjou K A. A class of Fourier multipliers for modulation spaces. Appl Comput Harmon Anal, 2005, 19: 131--139
[2] Bényi A, Gröchenig K, Okoudjou K A, Rogers L G. Unimodular Fourier multipliers for modulation spaces. J Funct Anal, 2007, 246: 366--384
[3] Bényi A, Okoudjou K A. Local well-posedness of nonlinear dispersive equations on modulation spaces. Available at arXiv:0704.0833vl, 2007
[4] Chandarana S. Lp-bounds for hyper-singular integral operators along curves. Pacific J Math, 1996, 175: 389--416
[5] Cordero E, Nicola F. Some new Strichartz estimates for the Schrödinger equation. Preprint, Available at arXiv:0707.4584, 2007
[6] Feichtinger H G. Banach spaces of distributions of Wiener's type and interpolation//Butzer P, Sz Nagy B, Görlich E, eds. Proc Conf Oberwolfach, Functional Analysis and Approximation. Basel, Boston, Stuuugart: Birkhäuser-Verlag, 1981: 153--165
[7] Feichtinger H G. Modulation Spaces on Locally Compact Abelian Groups. Technical Report. Vienna: University of Vienna, 1983
[8] Gröchenig K. Foundations of Time-Frequency Analysis. Boston: Birkhäuser, 2001
[9] Kobayashi M. Dual of modulation spaces. J Funct Spaces Appl, 2007, 5: 1--8
[10] Kobayashi M. Modulation spaces Mp,q for 0<p,q\leq\infty. J Function Spaces Appl, 2006, 4: 329--341
[11] Le H V. Hypersingular integral operators along surfaces. Integr Equ Oper Theory, 2002, 44: 451--465
[12] Stein E M. Harmonic Analysis. Princeton, NJ: Princeton University Press, 1993
[13] Wang B, Hudzik H. The global Caughy problem for the NLS and NLKG with small rough data. J Differential Equation, 2007, 232: 36--73
[14] Zielinski M. Highly Oscillatory Singular Integrals along Curves [D]. Madison, WI: University of Wisconsin, 1985 |