[1]Gross J, Trenkler G,Liski E P. Necessary and sufficient conditions for superiority of misspecified restricted least squares regression estimator. J Statist Planning Inference, 1998, 71:109-116
[2]Razzaghi M. A superiority problem in misspecified restricted linear model. Commu n Statist Ser B, 1987,16:899-902
[3]Kabe D G, Gupta A K. On a superiority problem in misspecified restricted linear models. Commun Statist Ser A, 1989, 18: 1753-1757
[4]Zhang B X, Liu B S. Some further remarks on a superiority problem in misspecified restricted linear models. Metrika, 2000,52(2):173-181
[5]Rao C R. Unified theory of linear estimation. Sankhya Ser A,1971,33: 371-394
[6]Aitken A C. On least squares and linear combination of observations. Proc Roy Soc Edinburgh Sect, 1935,A55:42-49
[7]Rao C R. Linear Statistical Inference and Its Applications. 2nd ed, Ne w York: Wiley, 1973
[8]Albert A. The GaussMarkov theorem for regression models with possibly singular covariances. SIAM Appl Math, 1973,24: 182-187
[9]Searle S R. Extending some results, proofs for the singularlinear model. Linear Algebra Appl, 1994,210: 139-151
[10]Bhimasankaram P, Sengupta D. The linear zero functions approach to linear models. Sankhya Ser B, 1996,58: 338-351
[11]Jammalamadaka S R, Sengupta D. Changes in the general linear model: A un ified approach Linear Algebra Appl, 1999,289: 225-242
[12]Puntanen S, Scott A J. Some further remarks on the singular linear model. Linear Algebra Appl, 1996,237/238: 313-327
[13]Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press,1985
[14]Baksalary J K, Kala R, Klaczynski K. The matrix inequality M≥B^*MB . Linear Algebra Appl, 1983, 54: 77-86
|