[1] Stoyan D. Comparison Methods for Queues and other Stochastic Models. New York: Wiley, 1983
[2] Lehmann E L. Ordered families of distributions. Ann Math Statist, 1955, 26: 399--419
\REF{
[3]}Lucas L A, Wright F T. Testing for and against
a stochastic ordering between multivariate multinomial populations.
J Multi Anal, 1991, {\bf 38}: 167--186
\REF{
[4]}Roberston T, Wright F T. Likelihood
ratio tests for and against a stochastic ordering between
multinomial population. Ann Statist, 1981, {\bf 9}: 1248--1257
\REF{
[5]}Dykstra R, Madsen R W, Fairbanks K. A
nonparametric likelihood ratio test. J Statist Comput Simul,
1983,{\bf 18}: 247--264
\REF{
[6]}Franck W E. A likelihood ratio test for stochastic ordering.
J Amer Statist Assoc, 1984, {\bf 79}: 686--691
\REF{
[7]} Wang Y. A Likelihood ratio test against stochastic
ordering in several populations. J Amer Statist Assoc,
1996, {\bf 91}: 1676--1683
\REF{
[8]}Dardanoni V, Forcina A. A unified approach
to likelihood inference on stochastic in a nonparametric context.
J Amer Statist Assoc, 1998, {\bf 93}: 1112--1123
\REF{
[9]} Feng Y, Wang J. Likelihood ratio test against simple stochastic ordering among
several multinomial populations. J Statist Plann Inference,
2007, {\bf 137}: 1362--1374
\REF{
[10]} Feng Y, Wang J. Multi-sample testing for the equality of multinomial
populations against increasing convex ordering alternative.
Acta Math Sinica (Chin Ser), 2006, {\bf 49}: 1217--1224
\REF{
[11]}Dykstra R, Kochar S, Robertson T. Statistical
inference for uniform stochastic ordering in several populations.
Ann Statist, 1991, {\bf 19}: 870--888
\REF{
[12]} Yanagawa T, Fujii Y. Homogeneity test with a generalized
Mantel-Haenszel estimator for $L2\times J$ contingency table.
J Amer Statist Assoc, 1990, {\bf 85}: 744--748
\REF{
[13]} Yanagawa T, Fujii Y. Projection-method Mantel-Haenszel
estimator for $k2\times J$ tables. J Amer Statist Assoc, 1995, {\bf 90}: 649--656
\REF{
[14]}Bartholomew D J. A test of homogeneity for ordered
alternatives I, II. Biometrika, 1959, {\bf 46}: 36--48
\REF{
[15]}Bartholomew D J. A test of homogeneity of means
under restricted alternatives. J Roy Statist Soc (Ser B), 1961, {\bf 18}: 239--281
\REF{
[16]}Hayter A J, Liu W. Exact calculations for the
one-sideed studentized range test for testing against a simple
ordered alternative. Comput Statist Data Anal, 1996, {\bf 22}: 17--25
\REF{
[17]}Singh P, Liu W. A test against an umbrella ordered
alternative. Comput Statist Data Anal, 2006, {\bf 51}: 1957--1964
\REF{
[18]}Feng Y. Nonparametric statistical inference for umbrella trend alternative
among multinomial populations. Vietnam J Math, 2008, {\bf 36}: 291--304
\REF{
[19]}Chuang-Stein C, Agresti A. A review of tests for
detecting a monotone dpse-response relationship with ordinal
response data. Statist Med, 1997, {\bf 16}: 2599--2618
\REF{
[20]}Shapiro A. Towards a unified theory of inequality
constrained testing in multivariate analysis. Internat
Statist Rev, 1988, {\bf 56}: 49--62
\REF{
[21]}Kud\^{o} A. A multivariate analogue of the one-sided test.
Biometrika, 1963, {\bf 50}: 403--418
\REF{
[22]}Feng Y, Wang J. Likelihood ratio test against stochastic order in three way
contingency tables. Comm Statist Theory Methods, 2008, {\bf 37}: 81--96
\REF{
[23]}Billingsley P. Convergence of Probability Measures. New York: Wiley, 1968 |