[1] Adams R A. Sobolev Spaces. New York, London: Academic Press, 1975
[2] Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and Calculus of Variations. New York: Springer-Verlag, 2005
[3] Catte F, Lions P L, Morel J M, Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Num Anal, 1992, 29(1): 182--193
[4] Evans L C. Partial Differential Equations. Providence: American Mathematical Society, 1998
[5] Greer J B. Fourth order diffusions for image processing
[D]. Durham: Duke University, 2003
[6] Greer J B, Bertozzi A L. H1 solution of a class of fourth order nonlinear equations for image processing. Discrete and Continuous Dynamical Systems, 2004, 10(1/2): 349--366
[7] Lions J L. Quelques Methodes de Resolution des Problemes aux Limites Non Lin\'{e}aries. Paris: Dunod, 1969
[8] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell, 1990, 12(7): 629--639
[9] Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer, 2000 (second edition)
[10] Tumblin J, Turk G. LCIS: A boundary hierarchy for detail-preserving contrast reduction. In Proceedings of the SIGGRAPH, 1999, 99: 83--90
[11] Wei G W. Generalized Perona-Malik equation for image processing. IEEE Signal Processing Letters, 1999, 6(7): 165--167
[12] Whitaker R, Pizer S. A multi-scale approach to nonuniform diffusion. CVGIP: Image Understanding,1993, 57(1): 99--110
[13] You Y L, Kaveh M. Fourth-order partial differential equations for noise removal. IEEE Trans Image Process, 2000, 9(10): 1723--1730
|