数学物理学报 ›› 2009, Vol. 29 ›› Issue (5): 1167-1174.

• 论文 • 上一篇    下一篇

 一类乘子收敛级数空间

  

  1. 哈尔滨工业大学数学系 哈尔滨 150001
  • 收稿日期:2007-08-20 修回日期:2008-11-25 出版日期:2009-10-25 发布日期:2009-10-25

A Class of Multiplier Convergent Series Spaces

  1. Department of Mathematics, Harbin Institute of Technology, Harbin 150001
  • Received:2007-08-20 Revised:2008-11-25 Online:2009-10-25 Published:2009-10-25

摘要:

仅仅依靠序列空间λ的内蕴性质, 作者给出了λ -乘数收敛级数空间X(λ)上的一个局部凸拓扑TΒ, 并证明了(X(λ), TΒ)是AK -空间, 具有序列完备性和Banach-Steinhaus性质. 特别是作者给出了此空间上的一个改进的Orlicz-Pettis定理.

关键词: 准Banach-Steinhaus性质, Orlicz-Pettis定理, 乘数收敛, 序列空间

Abstract:

Depending only upon the intrinsic properties of a sequence space λ, the authors endow a locally convex topology TΒ on λ-multiplier convergent series space X(λ) and obtain that (X(λ), TΒ) is an AK-space and has sequentially completeness and Banach-Steinhaus properties. In particular, the authors give a generalization of the Orlicz-Pettis theorem for the series in X(λ).

Key words: Quasi Banach-Steinhaus property, Orlicz-Pettis theorem, Multiplier convergent, Sequence space

中图分类号: 

  • 46A03