[1]Wu J H, Zhao X Q, He X Z. Global asymptotic behavior in almost periodic Kolmogorov equations and chemostat models. Nonlin World, 1996, 3: 589-611
[2]Teng Z D, Chen L S. The positive periodic solutions of periodic Kolmogorove type systems with delays. Acta Mathematicae Applicatae Sinica, 1999, 22: 446-456
[3]范猛, 王克. 多种群生态竞争系统周期正解的存在性和全局吸引性. 数学学报, 2000,43(1): 77-82
[4] Lansun C. Mathematical Models and Methods in Ecology. Beijing:Science Press, 1988(in Chinese)
[5] de Mottoni P, Schiaffino A. Competition system with periodic coefficient:A geometric approach. J Math Biol, 1981, 11: 319-335
[6]Cushing J M. Two species competition in a periodic environment. J Math Biol, 1980, 10: 385-400
[7] Cushing J M. Periodic LotkaVolterra competition equations. J Math Biol, 1986, 24: 381-403
[8]Ahmad S. On almost periodic solutions of the competing species problems. Proc Amer Math Soc, 1988, 102: 855-865
[9]Ahmad S. On the nonautonomous VolterraLotka competition equations. Proc Amer Math Soc, 1993, 177: 199-204
[10]Gopalsamy K. Global asymptotic stability in a almost periodic LotkaVolterra system. J Austral Math Soc(Ser B), 1986, 28: 346-360
[11]Gopalsamy K. Global asymptotic stability in a periodic LotkaVolterrasystem. J Austral Math Soc(Ser B), 1985, 27: 66-72
[12]lvarz C, Lazer A C. An application of topological degree to the periodic competing species problem. J Austral Math Soc Ser B, 1986, 28: 202-21
[13] 马知恩. 种群生态学的数学建模与研究. 合肥:安徽科技出版社, 1996
[14] 文贤章. 多种群生态捕食食饵时滞系统正周期解的全局吸引性. 数学学报, 2002, 45(1): 83-92
[15]Yang P H, Xu R. Global attractivity of the periodic LotkaVolterra system. J Math Anal Appl, 1999, 233: 221-232
[16]Hale J K. Asymptotic behavior of dissipative system. Math Surveys Monographs 25. Amer Math Soc, Rhode Island: Providence, 1988
[17 ]Zhao X Q. Uniform persistence and periodic coexistence states in infinitedimensional periodic semiflows with applications. Canadian Applied Mathematics Quarterly, 1995, 3(4): 473-495
|