[1] BREWIS M J, BELLOFIORE A, VANDERPOOL R R, et al. Imaging right ventricular function to predict outcome in pulmonary arterial hypertension[J]. Int J Cardiol, 2016, 218:206-211. [2] KUTTY S, SHANG Q, JOSEPH N, et al. Abnormal right atrial performance in repaired tetralogy of Fallot:A CMR feature tracking analysis[J]. Int J Cardiol, 2017, 248:136-142. [3] VOELKEL N F, QUAIFE R A, LEINWAND L A, et al. Right ventricular function and failure:report of a national heart, lung, and blood institute working group on cellular and molecular mechanisms of right heart failure[J]. Circulation, 2006, 114(17):1883-1891. [4] HAUTVAST G, LOBREGT S, BREEUWER M, et al. Automatic contour propagation in cine cardiac magnetic resonance images[J]. IEEE Trans Med Imaging, 2006, 25(11):1472-1482. [5] HUANG X Q, ZHAO L L, CHEN L Y, et al. Accelerated cardiac CINE imaging with CAIPIRINHA and partial parallel acquisition[J]. Chinese J Magn Reson, 2017, 34(3):283-293. 黄小倩, 赵乐乐, 陈利勇, 等. 基于同时多层激发和并行成像的心脏磁共振电影成像[J]. 波谱学杂志, 2017, 34(3):283-293. [6] PETITJEAN C, ZULUAGA M A, BAI W, et al. Right ventricle segmentation from cardiac MRI:A collation study[J]. Med Image Anal, 2015, 19(1):187-202. [7] ZULUAGA M, CARDOSO M, MODAT M, et al. Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion[C]. Lodon:FIMH 2013:Functional Imaging and Modeling of the Heart, 2013, 7945:172-180. [8] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. Boston:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015:3431-3440. [9] BAI W J, SHI W Z, LEDIG C, et al. Multi-atlas segmentation with augmented features for cardiac MR images[J]. Med Image Anal, 2015, 19(1):98-109. [10] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42:60-88. [11] PETITJEAN C, DACHER J N. A review of segmentation methods in short axis cardiac MR images[J]. Med Image Anal, 2011, 15(2):169-184. [12] KATOUZIAN A, PRAKASH A, KONOFAGOU E. A New automated technique for left-and right-ventricular segmentation in magnetic resonance imaging[J]. Conf Proc IEEE Eng Med Biol Soc, 2006, 1:3074-3077. [13] WANG L J, PEI M C, CODELLA N C, et al. Left ventricle:fully automated segmentation based on spatiotemporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST)[J]. BioMed Res Int, 2015, 2015:367583. [14] ROSADO-TORO J A, ABIDOV A, ALTBACH M I, et al. Segmentation of the right ventricle in four chamber cine cardiac MR images using polar dynamic programming[J]. Comput Med Imaging Graph, 2017, 62:15-25. [15] GOSHTASBY A, TURNER D A. Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers[J]. IEEE Trans Med Imaging, 1995, 14(1):56-64. [16] WANG C W, PENG C W, CHEN H C. A simple and fully automatic right ventricle segmentation method for 4-dimensional cardiac MR images[C]//Nice:Proceedings of 3D Cardiovascular Imaging:A MICCAI Segmentation Challenge, 2012. [17] YILMAZ P, WALLECAN K, KRISTANTO W, et al. Evaluation of a semi-automatic right ventricle segmentation method on short-axis MR images[J]. J Digit Imaging, 2018, 31(5):670-679. [18] MAIER O M O, JIMENEZ D, SANTOS A, et al. Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts[C]//Krakow:2012 Computing in Cardiology, 2012:697-700. [19] GROSGEORGE D, PETITJEAN C, DACHER J N, et al. Graph cut segmentationwith a statistical shape model in cardiac MRI[J]. Comput Vis Image Und, 2013, 117(9):1027-1035. [20] ABI-NAHED J, JOLLY M P, YANG G Z. Robust active shape models:A robust, generic and simple automatic segmentation tool[C]//Copenhagen:Medical Image Computing and Computer Assisted Intervention, 2006:1-8. [21] GROSGEORGE D, PETITJEAN C, CAUDRON J, et al. Automatic cardiac ventricle segmentation in MR images:a validation study[J]. Int J Comput Assist Radiol Surg, 2011, 6(5):573-581. [22] ARRIETA C, URIBE S, SING-LONG C, et al. Simultaneous left and right ventricle segmentation using topology preserving level sets[J]. Biomed Signal Processing, 2017, 33:88-95. [23] HUANG J S, HUANG X L, METAXAS D, et al. Dynamic texture based heart localization and segmentation in 4-D cardiac images[C]//Arlington:20074th IEEE International Symposium on Biomedical Imaging:From Nano to Macro, 2007:852-855. [24] MITCHELL S C, LELIEVELDT B P, VAN DER GEEST R J, et al. Multistage hybrid active appearance model matching:Segmentation of left and right ventricles in cardiac MR images[J]. IEEE Trans Med Imaging, 2001, 20(5):415-423. [25] ZHANG H H, WAHLE A, JOHNSON R K, et al. 4-D Cardiac MR image analysis:Left and right ventricular morphology and function[J]. IEEE Trans Med Imaging, 2010, 29(2):350-364. [26] ROHLFING T, BRANDT R, MENZEL R, et al. Evaluation of atlas selection strategies for atlas based image segmentation with application to confocal microscopy images of bee brains[J]. NeuroImage, 2004, 21(4):1428-1442. [27] ZHANG Y N, CHEN C S, KANG Y. Accurate segmentation of right ventricles based on multi-atlas with affinity propagation clustering selection[J]. Journal of Northeastern University (Natural Science), 2014, 35(6):795-799. 张耀楠, 陈传慎, 康雁. 基于仿射传播聚类选择的多Atlas右心室精准分割[J]. 东北大学学报(自然科学版), 2014, 35(6):795-799. [28] AWATE S P, ZHU P H, WHITAKER R T. How many templates does it take for a good segmentation?:Error analysis in multiatlas segmentation as a function of database size[J]. Med Image Comput Compu Assist Interv, 2012, 7509:103-114. [29] YU J, CHEN X, ZHOU Y P. Improved multi-step registration method for cardiac nuclear magnetic resonance image[J]. Software Guide, 2016, 15(5):207-209. 余军, 陈雪, 周勇攀. 一种改进的心脏核磁共振图像多步配准方法[J]. 软件导刊, 2016, 15(5):207-209. [30] PUNITHAKUMAR K, NOGA M, BEN AYED I, et al. Right ventricular segmentation in cardiac MRI with moving mesh correspondences[J]. Comput Med Imaging Graph, 2015, 43:15-25. [31] LORENZO-VALDÉS M, SANCHEZ-ORTIZ G I, MOHIADDIN R, et al. Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration[C]//Tokyo:Medical Image Computing and Computer Assisted Intervention. 2002:642-650. [32] SHI W Z, ZHUANG X H, PIZARRO L, et al. Registration using sparse free-form deformations[J]. Med Image Comput Comput Assist Interv, 2012, 15(pt2):659-666. [33] BAI W J, SHI W Z, O'REGAN D P, et al. A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement:Application to cardiac MR images[J]. IEEE Trans Med Imaging, 2013, 32(7):1302-1315. [34] OU Y M, SOTIRAS A, PARAGIOS N, et al. DRAMMS:deformable registration via attribute matching and mutual-saliency weighting[J]. Med Image Anal, 2011, 15(4):622-639. [35] ZHUANG X, HAWKES D J, CRUM W R, et al. Robust registration between cardiac MRI images and atlas for segmentation propagation[C]//USA:SPIE Medical Imaging Symposium. 2008:1-11 [36] ZHUANG X H. Multivariate mixture model for myocardial segmentation combining multi-source images[J]. IEEE T Pattern Anal, 2018:1. [37] ASMAN A J, LANDMAN B A. Robust statistical label fusion through consensus level, labeler accuracy, and truth estimation (COLLATE)[J]. IEEE Trans Med Imaging, 2011, 30(10):1779-1794. [38] ASMAN A J, LANDMAN B A. Non-local statistical label fusion for multi-atlas segmentation[J]. Med Image Anal, 2013, 17(2):194-208. [39] LORENZO-VALDÉS M, SANCHEZ-ORTIZ G I, MOHIADDIN R, et al. Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm[J]. Med Image Anal, 2004, 8(3):255-265. [40] WANG L J, SU X Y, LI Y, et al. Segmentation of right ventricle in cardiac cine MRI using COLLATE fusion based multi-atlas[J]. Chinese J Magn Reson, 2018, 35(4):407-416. 王丽嘉, 苏新宇, 李亚, 等. 基于COLLATE融合多图谱的心脏电影MRI右心室分割[J]. 波谱学杂志, 2018, 35(4):407-416. [41] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323:533-536. [42] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [43] HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Comput, 2006, 18(7):1527-1554. [44] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A reviewon deep learning techniques applied to semanticsegmentation[J]. Computer Vision and Pattern Recognition, 2017. arXiv:1704.06857 [45] RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional networks for biomedical image segmentation[J]. Computer Vision and Pattern Recognition, 2015. arXiv:1505.04597. [46] TRAN P V. A Fully Convolutional neural network for cardiac segmentation in short-axis MRI[J]. Computer Vision and Pattern Recognition, 2016. arXiv:1604.00494. [47] POUDEL R P K, LAMATA P, MONTANA G. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation[J]. MICCAI Workshop RAMBO, 2016. arXiv:1608.03974. [48] OKTAY O, BAI W, LEE M, et al. Multi-input cardiac image super-resolution using convolutional neural networks[C]//MICCAI Workshop RAMBO, 2016. 246-254. [49] CHEN J, ZHANG H V, ZHANG W W, et al. Correlated regression feature learning for automated right ventricle segmentation[J]. IEEE J Trans Eng Health Med, 2018, 6:1800610. [50] DU X Q, ZHANG W W, ZHANG H Y, et al. Deep regression segmentation for cardiac bi-ventricle MR images[J]. IEEE Access, 2018, 6:3828-3838. [51] BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis:Is the problem solved?[J]. IEEE T Med Imaging, 2018, 37(11):2514-2525. [52] BAUMGARTNER C F, KOCH L M, POLLEFEYS M, et al. An Exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:111-119. [53] ISENSEE F, JAEGER P, FULL P, et al. Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:120-129. [54] PATRAVALI J, JAIN S, CHILAMKURTHY S. 2D-3D Fully convolutional neural networks for cardiac MR segmentation[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:130-139. [55] YANG X, BIAN C, YU L, et al. Class-balanced deep neural network for automatic ventricular structure segmentation[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:152-160. [56] JANG J, HA S, KIM S, et al. Automatic segmentation of LV and RV in cardiac MRI[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:161-169. [57] KHENED M, ALEX V, KRISHNAMURTHI G. Densely connected fully convolutional network for short-axis cardiac cine mr image segmentation and heart diagnosis using random forest[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:140-151. [58] ROHE M M, SERMESANT M, PENNEC X. Automatic multi-atlas segmentation of myocardium with SVF-Net[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:170-177. [59] ZOTTI C, LUO Z, HUMBERT O, et al. Gridnet with automatic shape prior registration for automatic mri cardiac segmentation[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:73-81. [60] WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Automatic segmentation and disease classification using cardiac cine MR images[C]//Quebec:ACDC and MMWHS Challenges, 2017, 10663:101-110. [61] RUPPRECHT C, HUAROC E, BAUST M, et al. Deep active contours[J]. Computer Vision and Pattern Recognition, 2016. arXiv:1607.05074. [62] NGO T A, LU Z, CARNEIRO G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance[J]. Med Image Anal, 2017, 35:159-171. |