[1] Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction[J]. Annu Rev Biochem, 2000, 69: 183-215.[2] Galperin M Y. Structural classification of bacterial response regulators: Diversity of output domains and domain combinations[J]. J Bacteriol, 2006, 188(12): 4 169-4 182.[3] Fabret C, Feher V A, Hoch J A. Two-component signal transduction in Bacillus subtilis: How one organism sees its world[J]. J Bacteriol, 1999, 181(7): 1 975-1 983.[4] Bourret R B. Receiver domain structure and function in response regulator proteins[J]. Curr Opin Microbiol, 2010, 13(2): 142-149.[5] Lukat G S, Stock A M, Stock J B. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis[J]. Biochemistry, 1990, 29(23): 5 436-5 442.[6] Needham J V, Chen T Y, Falke J J. Novel ion specificity of a carboxylate cluster Mg(II) binding site: strong charge selectivity and weak size selectivity[J]. Biochemistry, 1993, 32(13): 3 363-3 367.[7] Hubbard J A, MacLachlan L K, King G W, et al. Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli[J]. Mol Microbiol, 2003, 49(5): 1 191-1 200.[8] Kojetin D J, Thompson R J, Benson L M, et al. Structural analysis of divalent metals binding to the Bacillus subtilis response regulator Spo0F: the possibility for in vitro metalloregulation in the initiation of sporulation[J]. Biometals, 2005, 18(5): 449-466.[9] Thompson J D, Higgins D G, Gibson T J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res, 1994, 22(22): 4 673-4 680.[10] Bisicchia P, Noone D, Lioliou E, et al. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis[J]. Mol Microbiol, 2007, 65(1): 180-200.[11] Fukushima T, Szurmant H, Kim E J, et al. A sensor histidine kinase co-ordinates cell wall architecture with cell division in Bacillus subtilis[J]. Mol Microbiol, 2008, 69(3): 621-632.[12] Ahn S J, Burne R A. Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans[J]. J Bacteriol, 2007, 189(17): 6 293-6 302.[13] Hancock L, Perego M. Two-component signal transduction in Enterococcus faecalis[J]. J Bacteriol, 2002, 184(21): 5 819-5 825.[14] Dubrac S, Boneca I G, Poupel O, et al. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus[J]. J Bacteriol, 2007, 189(22): 8 257-8 269.[15] Dubrac S, Msadek T. Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus[J]. J Bacteriol, 2004, 186(4): 1 175-1 181.[16] Howell A, Dubrac S, Andersen K K, et al. Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach[J]. Mol Microbiol, 2003, 49(6): 1 639-1 655.[17] Watanabe T, Okada A, Gotoh Y, et al. Inhibitors targeting two-component signal transduction[J]. Adv Exp Med Biol, 2008, 631: 229-236.[18] Qin Z Q, Zhang J, Xu B, et al. Structure-based discovery of inhibitors of the YycG histidine kinase: New chemical leads to combat Staphylococcus epidermidis infections[J]. BMC Microbiol, 2006, 6: 96-113.[19] Schnell R, Agren D, Schneider G. 1.9 Å structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis[J]. Acta Crystallogr F, 2008, 64(12): 1 096-1 100.[20] Gao R, Mack T R, Stock A M. Bacterial response regulators: Versatile regulatory strategies from common domains[J]. Trends Biochem Sci, 2007, 32(5): 225-234.[21] Lukat G S, McCleary W R, Stock A M, et al. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors[J]. Proc Natl Acad Sci U S A, 1992, 89(2): 718-722.[22] Bent C J, Isaacs N W, Mitchell T J, et al. Crystal structure of the response regulator 02 receiver domain, the essential YycF two-component system of Streptococcus pneumoniae in both complexed and native states[J]. J Bacteriol, 2004, 186(9): 2 872-2 879.[23] Zhao H, Heroux A, Sequeira R D, et al. Preliminary crystallographic studies of the regulatory domain of response regulator YycF from an essential two-component signal transduction system[J]. Acta Crystallogr F, 2009, 65(7): 719-722.[24] Pellecchia M, Montgomery D L, Stevens S Y, et al. Structural insights into substrate binding by the molecular chaperone DnaK[J]. Nat Struct Biol, 2000, 7(4): 298-303.[25] Stevens S Y, Sanker S, Kent C, et al. Delineation of the allosteric mechanism of a cytidylyltransferase exhibiting negative cooperativity[J]. Nat Struct Biol, 2001, 8(11): 947-952.[26] Zuiderweg E R. Mapping protein-protein interactions in solution by NMR spectroscopy[J]. Biochemistry, 2002, 41(1): 1-7.[27] Chang D K, Chien W J, Arunkumar A I. Conformation of a protein kinase C substrate NG(28-43), and its analog in aqueous and sodium dodecyl sulfate micelle solutions[J]. Biophys J, 1997, 72(2 Pt 1): 554-566.[28] Chen A, Shapiro M J. Affinity NMR[J]. Anal Chem, 1999, 71(19): 669A-675A.[29] Shuker S B, Hajduk P J, Meadows R P, et al. Discovering high-affinity ligands for proteins: SAR by NMR[J]. Science, 1996, 274(5 292): 1 531-1 534.[30] van Nuland N A, Kroon G J, Dijkstra K, et al. The NMR determination of the IIA(mtl) binding site on HPr of the Escherichia coli phosphoenol pyruvate-dependent phosphotransferase system[J]. FEBS Lett, 1993, 315(1): 11-15.[31] Delaglio F, Grzesiek S, Vuister G W, et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3): 277-293.[32] Farmer B T, 2nd, Constantine K L, Goldfarb V, et al. Localizing the NADP+ binding site on the MurB enzyme by NMR[J]. Nat Structl Biol, 1996, 3(12): 995-997.[33] Stock A M, Martinez-Hackert E, Rasmussen B F, et al. Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis[J]. Biochemistry, 1993, 32(49): 13 375-13 380.[34] Clore G M, Gronenborn A M, Birdsall B, et al. 19F-n.m.r. studies of 3',5'-difluoromethotrexate binding to Lactobacillus casei dihydrofolate reductase. Molecular motion and coenzyme-induced conformational changes[J]. Biochem J, 1984, 217(3): 659-666.[35] Lennon A J, Scott N R, Chapman B E, et al. Hemoglobin affinity for 2,3-bisphosphoglycerate in solutions and intact erythrocytes: Studies using pulsed-field gradient nuclear magnetic resonance and Monte Carlo simulations[J]. Biophys J, 1994, 67(5): 2 096-2 109.[36] Birck C, Chen Y, Hulett F M, et al. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface[J]. J Bacteriol, 2003, 185(1): 254-261.[37] Davies K M, Lowe E D, Venien-Bryan C, et al. The HupR receiver domain crystal structure in its nonphospho and inhibitory phospho states[J]. J Mol Biol, 2009, 385(1): 51-64.[38] Appleby J L, Bourret R B. Proposed signal transduction role for conserved CheY residue Thr87, a member of the response regulator active-site quintet[J]. J Bacteriol, 1998, 180(14): 3 563-3 569.[39] Lukat G S, Lee B H, Mottonen J M, et al. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis[J]. J Biol Chem, 1991, 266(13): 8 348-8 354. |