[1] Krishnamoorti R, Vaia R A. Polymer nanocomposites[J]. J Polym Sci Pt B-Polym Phys, 2007, 45: 3 252-3 256. [2] Dang Q, Lu S, Yu S, et al. Silk fibroin/montmorillonite nanocomposites: Effect of ph on the conformational transition and clay dispersion[J]. Biomacromolecules, 2010, 11(7): 1 796-1 801. [3] Tien Y I, Wei K H. High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders[J]. Macromolecules, 2001, 34(26): 9 045-9 052. [4] Wang X, Gao Y, Mao K, et al. Unusual rheological behavior of liquid polybutadiene rubber/clay nanocomposite gels: The role of polymer-clay interaction, clay exfoliation, and clay orientation and disorientation[J]. Macromolecules, 2006, 39(19): 6 653-6 660. [5] Vijayan P P, Puglia D, Maria H J, et al. Clay nanostructure and its localisation in an epoxy/liquid rubber blend[J]. Rsc Advances, 2013, 3(46): 24 634-24 643. [6] Zhou Ping(周平), Hu Bing-wen(胡炳文). Temperature-induced phase transition in the silk gland of bombyx mori silkworm lumen: A high-resolution solid-state 13C NMR study(低温诱导桑蚕体内腺体相行为的高分辨13C固体核磁共振研究)[J]. Chinese J Magn Reson(波谱学杂志), 2009, 26: 17-26. [7] Zou Qin(邹琴), Shen Wan-ling(申万岭), Gao Xiu-zhi(高秀枝), et al. A solid-state NMR study on the segmnetal motion of polyhedral oligmeric silsequi-oxane(poss) nanocomposites(POSS 纳米复合物链运动的固体NMR 研究)[J]. Chinese J Magn Reson(波谱学杂志), 2012, 29(2): 248-257. [8] Gao Y, ZHANG R, Lv W, et al. Critical effect of segmental dynamics in polybutadiene/clay nanocomposites characterized by solid state 1H NMR spectroscopy[J]. J Phys Chem C, 2014, 118 (10): 5 606-5 614. [9] Sun P C, Zhu J J, Chen T H. 2H NMR characterization of clay dispersion and confinement effect on probe molecules in rubber/clay nanocomposite-gels[J]. Chinese J Polym Sci, 2009, 27(1): 71-76. [10] Vanderhart D L, Asano A, Gilman J W. Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 2.Measurement of clay dispersion, crystal stratification, and stability of organic modifiers[J]. Chem Mater, 2001, 13(10): 3 796-3 809. [11] Brus J, Urbanova M, Kelnar I, et al. A solid-state NMR study of structure and segmental dynamics of semicrystalline elastomer-toughened nanocomposites[J]. Macromolecules, 2006, 39 (16): 5 400-5 409. [12] Kim S Y, Meyer H W, Saalwaechter K, et al. Polymer dynamics in peg-silica nanocomposites: Effects of polymer molecular weight, temperature and solvent dilution[J]. Macromolecules, 2012, 45(10): 4 225-4 237. [13] Cui L, Tarte N H, Woo S I. Effects of modified clay on the morphology and properties of PMMA/clay nanocomposites synthesized by in situ polymerization[J]. Macromolecules, 2008, 41(12): 4 268-4 274. [14] Torchia D A. The measurement of proton-enhanced carbon-13 t1 values by a method which suppresses artifacts[J]. J Magn Reson, 1978, 30(3): 613-616. [15] Liu S F, Mao J D, Schmidt-Rohr K. A robust technique for two-dimensional separation of undistorted chemical-shift anisotropy powder patterns in magic-angle-spinning NMR[J]. J Magn Reson, 2002, 155(1): 15-28. [16] Zhu J, Chen H, Huang K, et al. Effect of organoclay on the rheological behavior of carboxyl-terminated polybutadiene gels[J]. Acta Polymerica Sinica, 2011, (5): 522-529. [17] Henrichs P M, Tribone J, Massa D J, et al. Blend miscibility of bisphenol a polycarbonate and poly(ethylene terephthalate) as studied by solid-state high-resolution 13C NMR spectroscopy[J]. Macromolecules, 1988, 21(5): 1 282-1 291. [18] Witter R, Sternberg U, Hesse S, et al. 13C chemical shift constrained crystal structure refinement of cellulose i-alpha and its verification by nmr anisotropy experiments[J]. Macromolecules, 2006, 39(18): 6 125-6 132. |