[1] Wang Qian-feng(王前锋), Li Jian-qi(李建奇), Wu Dong-mei(吴东梅), et al. High-resolution diffusion-weighted imaging on small animals on a clinical 3 T MRI scanner(小动物高分辨扩散加权成像在临床MRI上的实现)[J]. Chinese J Magn Reson(波谱学杂志), 2012, 29(3): 372-378.[2] Zhang Xiaodong(张晓东). The preliminary fMRI investigation of 10 Hz modulation laser acupuncture induced cerebral cortical activation in human(以功能性核磁共振造影初探10 Hz调制激光针灸刺激所引发人类大脑皮质的活化现象)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(3): 369-378. [3] Weisslede R, Mahmood U. Molecular imaging[J]. Radiology, 2001, 219(2): 316-333.[4] Zhou X. Hyperpolarized Noble Gases as Contrast Agents: In vivo NMR Imaging: Methods and Protocols[M]. USA: Humana Press, 2011.[5] Zeng X, Wu Z, Call T, et al. Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and 129Xe nuclei in alkali metalnoblegas van der Waals molecules\[J\]. Phys Rev A, 1985, 31(1): 260-278.[6] Bowers C R, Weitekamp D P. Transformation of symmertrization order to nuclear-spin magnetization by chemical-reaction and nuclear-magnetic-resonance[J]. Phys Rev Lett, 1986, 57(21): 2 645-2 648.[7] Golman K, Axelsson O, Jóhannesson H, et al. Parahydrogen-induced polarization in imaging: subsecond C-13 angiography[J]. Magn Reson Med, 2001, 46(1): 1-5.[8] Song C, Hu K N, Joo C G, et al. TOTAPOL: A biradical polarizing agent for dynamic nuclear polarization experiment in aqueous media[J]. J Am Chem Soc, 2006, 128(35): 11 385-11 390.[9] Jan H, Larsen A, Fridlund B, et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR[J]. Proc Natl Acad Sci USA, 2003, 100(18): 10 158-10 163.[10] Jameson C J. Multinuclear NMR[M]. New York: Plenum Press, 1987.[11] Dybowski C, Bansal N, Duncan T M. NMR spectroscopy of xenon in confined spaces: clathrates, intercalates, and zeolites[J]. Annu Rev Phys Chem, 1991, 42(1): 33-464. [12 Raftery D, Chmelka B F. Xenon NMR Spectroscopy, in NMR Basic Principles and Progress[M]. Berlin: Springer-Verlag, 1994.[13] Schoenborn B P, Watson H C, Kendrew J C. Binding of xenon to sperm whale myoglobin[J]. Nature, 1965, 207(4992): 28-30. [14] Schoenborn B P, Nobbs C L. The binding of xenon to sperm whale deoxymyoglobin[J]. Mol Pharmacol, 1966, 2(5): 495-498.[15] Schoenborn B P. Structure of alkaline metmyoglobin-xenon complex[J]. J Mol Biol, 1969, 45(2): 297-303. [16] Schoenborn B P. Binding of xenon to horse hemoglobin[J]. Nature, 1965, 208(5012): 760-762. [17] Tilton R F, Singh U C Jr., Weiner S J, et al. Computational studies of the interaction of myoglobin and xenon[J]. J Mol Biol, 1986, 192(2): 443-456. [18] Tilton R T Jr., Kuntz I D Jr.. Nuclear magnetic resonance studies of xenon-129 with myoglobin and hemoglobin[J]. Biochemistry, 1982, 21(26): 6 850-6 857.[19] Locci E, Dehouck Y, Casu M, et al. Probing proteins in solution by 129Xe NMR spectroscopy[J]. J Magn Reson, 2001, 150(2): 167-174.[20] Spence M M, Rubin S M, Dimitrov I E, et al. Functionalized xenon as a biosensor[J]. Proc Natl Acad Sci USA, 2001, 98(19): 10 654-10 657.[21] Sun Xian-ping(孙献平), Han Ye-qing(韩叶清), Luo Qing(罗晴), et al. Hyperpolarized 129Xe magnetic resonance imaging and its applications in biomedicine(超极化 129Xe磁共振波谱和成像及在生物医学中的应用)[J]. Physics(物理), 2011, 40(6): 381-390.[22] Bartik K, Luhmer M, Dutasta J P, et al. Xe-129 and H-1 NMR study of the reversible trapping of xenon by cryptophane-A in organic solution[J]. J Am Chem Soc, 1998, 120(4): 784-791.[23] Bifone A, Song Y Q, Seydoux R, et al. NMR of Laser-polarized Xenon in human blood[J]. Proc Natl Acad Sci USA, 1996, 93(23): 12 932-12 936.[24] Hill P A, Qian W, Roderic G E, et al. Thermodynamics of xenon binding to cryptophane in water and human plasma[J]. J Am Chem Soc, 2007, 129(30): 9 262-9 263.[25] Meldrum T, Schr-der L, David E, et al. Xenon-based molecular sensors in lipid suspensions[J]. J Magn Reson, 2010, 205(2): 242-246.[26] Rubin S, Spence M M, Dimitrov I, et al. Detection of a conformational change in maltose binding protein by 129Xe NMR spectroscopy[J]. J Am Chem Soc, 2001, 123(35): 8 616-8 617.[27] Schrder L, Lowery T, Hilty C, et al. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor\[J\]. Science, 2006, 314(5798): 446-449.[28] Darzac M, Brotin T, Bouchu D, et al. Cryptophanols, new versatile compounds for the synthesis of functionalized cryptophanes and polycryptophanes[J]. Chem Commun, 2002, 7(1): 48-49. [29] Huber G, Brotin T, Dubois L, et al. Water soluble cryptophanes showing unprecedented affinity for xenon: Candidates as NMR-based biosensors[J]. J Am Chem Soc, 2006, 128(18): 6 239-6 246.[30] Fogarty H A, Berthault P, Brotin T, et al. A cryptophane core optimized for xenon encapsulation[J]. J Am Chem Soc, 2007, 129(34): 10 332-10 333.[31] Fairchild R M, Joseph A I, Holman K T, et al. A water-soluble Xe@cryptophane-111 complex exhibits very high thermodynamic stability and a peculiar Xe-129 NMR chemical shift[J]. J Am Chem Soc, 2010, 132(44): 15 505-15 507.[32] Lowery T J, Garcia S, Ruiz E J, et al. Optimization of xenon biosensors for detection of protein interactions[J]. Chem Bio Chem, 2006, 7(1): 65-73.[33] Seward G K, Qian W, Dmochowski I J. Peptide-mediated cellular uptake of cryptophane[J]. Bioconjugate Chem, 2008, 19(11): 2 129-2 135.[34] Ye Y P, Bloch S, Xu B G, et al. Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors[J]. J Med Chem, 2006, 49(7): 2 268-2 275.[35] Seward G K, Bai Y B, Najat S, et al. Cell-compatible, integrin-targeted cryptophane 129Xe NMR biosensors[J]. Chem Sci, 2011, 2(6): 1 103-1 110.[36] Boutin C, Stopin A, Lenda F, et al. Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR the transferrin case[J]. Bioorgan Med Chem, 2011, 19(13): 4 135-4 143.[37] (a) Patyal B R, Gao J H, Williams R F, et al. Longitudinal relaxation and diffusion measurements using magnetic resonance signals from laser-hyperpolarized Xe-129 nuclei[J]. 1997, 126(1): 58-65; (b) Ruppert K, Brookeman J R, Hagspiel K D, et al. Probing lung physiology with xenon polarization transfer contrast (XTC)[J]. Magn Reson Med, 2000, 44(3): 349-357.[38] Spence M M, Ruiz E J, Rubin S M, et al. Development of functionalized xenon biosensor[J]. J Am Chem Soc, 2004, 126(46): 15 287-15 294.[39] Moulè A J, Spence M M, Han S I, et al. Amplification of xenon NMR and MRI by remote detection[J]. Proc Natl Acad Sci USA, 2003, 100(16): 9 122-9 127.[40] Zhou X, Graziani D, Pines A. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction[J]. Proc Natl Acad Sci USA, 2009, 106(40): 16 903-16 906.[41] Mynar J L, Lowery T J, Wemmer D E, et al. Xenon biosensor amplification via dendrimer-cage supramolecular constructs[J]. J Am Chem Soc, 2006, 128(19): 6 334-6 335.[42] Meldrum T, Seim K L, Bajaj V S, et al. A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold[J]. J Am Chem Soc, 2010, 132(17): 5 936-5 937.[43] Schrder L, Meldrum T, Smith M, et al. Temperature response of 129Xe depolarization transfer and its application for ultrasensitive NMR detection[J]. Phys Rev Lett, 2008, 100(25): 257 603(1-4).[44] Berthault P, Huber G, Desvaux H. Biosensing using laser-polarized xenon NMR/MRI[J]. Prog Nuc Magn Reson Spectr, 2009, 55(1): 35-60.[45] Qian W, Seward G K, Hill P A, et al. Designing 129Xe NMR biosensors for matrix metalloproteinase detection[J]. J Am Chem Soc, 2006, 128(40): 13 274-13 283.[46] Chambers J M, Hill P A, Aaron J A, et al. Cryptophane Xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase[J]. J Am Chem Soc, 2009, 131(2): 563-569.[47] Aaron J A, Chambers J M, Jude K M, et al. Structure of 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II[J]. J Am Chem Soc, 2008, 130(22): 6 942-6 943.[48] Roy V, Brotin T, Dutasta J P, et al. A cryptophane biosensor for detection of specific nucleotide targets through xenon-NMR[J]. Chem Phys Chem, 2007, 8(14): 2 082-2 085.[49] Schrder L, Chavez L, Meldrum T, et al. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance[J]. Angew Chem Int Ed, 2008, 47(23): 4 316-4 320. |