1 |
邹应诚. 基于卷积神经网络的颅内动脉瘤检测方法研究[D]. 武汉: 华中科技大学, 2019.
|
2 |
SUAREZ J I, TARR R W, SELMAN W RAneurysmal subarachnoid hemorrhage[J].New Engl J Med,2006,354(4):387-396.
doi: 10.1056/NEJMra052732
|
3 |
中国蛛网膜下腔出血诊治指南2019[J]. 中华神经科杂志, 2019, 52(12): 1006-1021.
|
|
Chinese guidelines for diagnosis and treatment of subarachnoid hemorrhage 2019[J]. Chinese Journal of Neurology, 2019, 52(12): 1006-1021.
|
4 |
沈瑞乐. 脑动脉瘤形成、破裂与脑血管形态学类型相关性研究[D]. 郑州: 郑州大学, 2016.
|
5 |
JOSEPH J J, DONNER T WLong-term insulin glargine therapy in type 2 diabetes mellitus: a focus on cardiovascular outcomes[J].Vasc Health Risk Manag,2015,11,107-116.
|
6 |
SONOBE M, YAMAZAKI T, YONEKURA M, et alSmall unruptured intracranial aneurysm verification study: SUAVe study, Japan[J].Stroke,2010,41(9):1969-1977.
doi: 10.1161/STROKEAHA.110.585059
|
7 |
娄云重, 刘颖, 江华, 等基于MRI和深度学习的桥小脑角区脑膜瘤与听神经瘤分类算法研究[J].波谱学杂志,2020,37(3):300-310.
|
|
LOU Y Z, LIU Y, JIANG H, et alA deep learning algorithm for classifying meningioma and auditory neuroma in the cerebellopontine angle from magnetic resonance images[J].Chinese J Magn Reson,2020,37(3):300-310.
|
8 |
SAILER A M, WAGEMANS B A, NELEMANS P J, et alDiagnosing intracranial aneurysms with MR angiography: systematic review and meta-analysis[J].Stroke,2014,45(1):119-126.
doi: 10.1161/STROKEAHA.113.003133
|
9 |
DAVIS W I, WARNOCK S H, HANSBERGER H RIntracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition[J].J Comput Assist Tomogr,1993,17(1):15-21.
doi: 10.1097/00004728-199301000-00002
|
10 |
魏志宏, 闫士举, 韩宝三, 等基于多输出的3D卷积神经网络诊断阿尔兹海默病[J].波谱学杂志,2021,38(1):92-100.
|
|
WEI Z H, YAN S J, HAN B S, et alDiagnosis of Alzheimer’s disease based on multi-output three-dimensional convolutional neural network[J].Chinese J Magn Reson,2021,38(1):92-100.
|
11 |
NAKAO T, HANAOKA S, NOMURA Y, et al Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography[J]. J Magn Reson Imaging, 2018, 47 (4): 948- 953.
doi: 10.1002/jmri.25842
|
12 |
SAKAI M, MURAYAMA S, GIBO M, et alCan maximum intensity projection images with multidetector-row computed tomography help to differentiate between the micronodular distribution of focal and diffuse infiltrative lung diseases?[J].J Comput Assist Tomogr,2005,29(5):588-591.
doi: 10.1097/01.rct.0000175710.98923.a2
|
13 |
UEDA D, YAMAMOTO A, NISHIMORI M, et alDeep learning for MR angiography: Automated detection of cerebral aneurysms[J].Radiology,2019,290(1):187-194.
doi: 10.1148/radiol.2018180901
|
14 |
HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: IEEE, 2016: 770-778.
|
15 |
SICHTERMANN T, FARON A, SIJBEN R, et alDeep learning-based detection of intracranial aneurysms in 3D TOF-MRA[J].Am J Neuroradiol,2019,40(1):25-32.
doi: 10.3174/ajnr.A5911
|
16 |
KAMNITSAS K, LEDIG C, NEWCOMBE VFJ, et al Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J]. Med Image Anal, 2017, 36, 61- 78.
doi: 10.1016/j.media.2016.10.004
|
17 |
GENG C, XIA W, HUANG L, et al Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network[J]. Biomed Eng Online, 2020, 19, 38.
doi: 10.1186/s12938-020-00770-7
|
18 |
ÇIçEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]// Medical Image Computing and Computer-Assisted Intervention, Berlin, Heidelberg. USA: MICCAI, 2016: 424-432.
|
19 |
GOYAL H, SANDEEP D, VENU R, et alNormalization of data in data mining[J].International Journal of Software and Web Sciences,2014,10,32-33.
|
20 |
DIEDERIK P K, JIMMY B. Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.6980, 2014.
|
21 |
MACYSZYN L, AKBARI H, PISAPIA J M, et alImaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques[J].Neuro-oncolog,2015,18(3):417-425.
|
22 |
EGAN J P, GREENBERG G Z, SCHULMAN A IOperating characteristics, signal detectability, and the method of free response[J].J Acoust Soc Am,1961,33,993-1007.
doi: 10.1121/1.1908935
|