Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (3): 291-302.doi: 10.11938/cjmr20212918
• Articles • Previous Articles Next Articles
Received:
2021-05-13
Online:
2022-09-05
Published:
2021-08-27
Contact:
Yuan-jun WANG
E-mail:yjusst@126.com
CLC Number:
Qin ZHOU, Yuan-jun WANG. Groupwise Registration for Magnetic Resonance Image Based on Variational Inference[J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 291-302.
Fig.3
Probability generation model. White circle represents hidden variable, gray circle represents observed value (input image), and squares represent parameters. Dashed rectangle indicates the number of independent repeats N of the x, y, z variables inside. Registration prior is defined by the mean value μz and covariance Σz of Gaussian parameters
Table 1
Groupwise registration results of multiple metrics on LPBA40 test set by different algorithms
方法 | Avg. Dice* | GPU运行时间/s* | Percentages (%) of | EM1 | EM2 |
ANTs (Syn) | 0.689 (0.036) | 45.6 (19) | 930.98 | 6.54 | |
voxelmorph-diff | 0.698 (0.030) | 0.51 (0.03) | 49.6 (11) | 960.67 | 6.29 |
voxelmorph | 0.672 (0.031) | 0.49 (0.02) | 48.9 (26) | 969.46 | 7.08 |
本文方法 | 0.701 (0.025) | 0.40 (0.02) | 45.0 (18) | 940.89 | 5.07 |
Fig.7
Mean images of distorted images by different algorithms. (a) Sagittal section central slice; (b) Coronal section central slice; (c) Horizontal section central slice. In each sub-figure, the first row from left to right is the mean image by voxelmorph algorithm, and voxelmorph-diff algorithm, the second row from left to right is the mean image by Syn algorithm and the method proposed in this work
Table 2
Groupwise registration results of multiple metrics on LPBA40 testing set with different noise intensities using the proposed method
噪声方差(均值为0) | Avg. Dice* | GPU运行时间/s* | Percentages (%) of | EM1 | EM2 |
0.001 | 0.686 (0.026) | 0.50 (0.02) | 48.8 (21) | 1330.97 | 89.54 |
0.002 | 0.683 (0.030) | 0.60 (0.04) | 49.3 (27) | 1360.67 | 100.29 |
0.003 | 0.646 (0.031) | 0.58 (0.02) | 51.7 (19) | 1469.46 | 99.08 |
0.004 | 0.656 (0.020) | 0.62 (0.03) | 54.5 (28) | 1480.89 | 113.07 |
1 |
WANG Y, JIANG F, LIU YReference-free brain template construction with population symmetric registration[J]. Med Biol Eng Comput, 2020,58 (9): 2083- 2093.
doi: 10.1007/s11517-020-02226-5 |
2 |
MARTÍN-GONZÁLEZ E, SEVILLA T, REVILLA-ORODEA A, et alGroupwise non-rigid registration with deep learning: an affordable solution applied to 2D cardiac cine MRI reconstruction[J]. Entropy, 2020,22 (6): 687.
doi: 10.3390/e22060687 |
3 |
GEE J C, REIVICH M, BILANIUK L, et alEvaluation of multiresolution elastic matching using mri data[J]. Proc Spie, 1991,1445,226- 234.
doi: 10.1117/12.45220 |
4 |
RUECKERT D, SONODA L INonrigid registration using free-form deformations: application to breast mr images[J]. IEEE T Med Imaging, 1999,18 (8): 712- 721.
doi: 10.1109/42.796284 |
5 | THIRION J PImage matching as a diffusion process: an analogy with Maxwell's demons[J]. Med Image Anal, 2011,2 (3): 243- 260. |
6 |
ZHONG J, PHUA D, QIU AQuantitative evaluation of lddmm, freesurfer, and caret for cortical surface mapping[J]. Neuroimage, 2010,52 (1): 131- 141.
doi: 10.1016/j.neuroimage.2010.03.085 |
7 |
ASAMI T, BOUIX S, WHITFORD T J, et alLongitudinal loss of gray matter volume in patients with first-episode schizophrenia: dartel automated analysis and roi validation[J]. Neuroimage, 2012,59 (2): 986- 996.
doi: 10.1016/j.neuroimage.2011.08.066 |
8 |
GUIMOND A, MEUNIER J, THIRION J PAverage brain models: a convergence study[J]. Comput Vis Image Und, 2000,77 (2): 192- 210.
doi: 10.1006/cviu.1999.0815 |
9 | SEGHERS D, D'AGOSTINO E, MAES F, et al. Construction of a brain template from mr images using state-of-the-art registration and segmentation techniques[C]// Medical Image Computing and Computer-Assisted Intervention--MICCAI 2004, 7th International Conference Saint-Malo, France, September 26-29, 2004, Proceedings, Part I. 2004. |
10 |
WU G, JIA H, WANG Q, et alSharpmean: groupwise registration guided by sharp mean image and tree-based registration[J]. Neuroimage, 2011,56 (4): 1968- 1981.
doi: 10.1016/j.neuroimage.2011.03.050 |
11 |
WU G, WANG Q, JIA H, et alFeature-based groupwise registration by hierarchical anatomical correspondence detection[J]. Hum Brain Mapp, 2012,33 (2): 253- 271.
doi: 10.1002/hbm.21209 |
12 | YANOVSKY I, THOMPSON P M, OSHER S, et al. Topology preserving log-unbiased nonlinear image registration: theory and implementation[C]// IEEE Conference on Computer Vision & Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007. |
13 | WANG Q, CHEN L Y YAP P T, et alGroupwise registration based on hierarchical image clustering and atlas synthesis[J]. Hum Brain Mapp, 2010,31,1128- 1140. |
14 |
CHE T, ZHENG Y, CONG J, et alDeep group-wise registration for multi-spectural images from fundus images[J]. IEEE Access, 2019,7,27650- 27661.
doi: 10.1109/ACCESS.2019.2901580 |
15 | CHE T, ZHENG Y, SUI X, et al. Dgr-net: deep groupwise registration of multispectral images[C]// Information Processing in Medical Imaging - 26th International Conference , Hong Kong, china: IPMI, 2019: 706-717. |
16 | HAASE R, HELDMANN S, LELLMANN J. Deformable groupwise image registration using low-rank and sparse decomposition[EB/OL]. [2020-06-10].https://arxiv.org/abs/2001.03509. |
17 | DALCA A V, RAKIC M, GUTTAG J, et al. Learning conditional deformable templates with convolutional networks[C]//Neural Information Processing Systems 2019(NeurIPS 2019), Vancouver, BC, Canada, 2019: 804-816. |
18 | YU E M, DALCA A V, SABUNCU M R Learning conditional deformable shape templates for brain anatomy[M]. Lima: Machine Learning in Medical Imaging, 2020, 353- 352. |
19 | SIEBERT H, HEINRICH M P Deep groupwise registration of mri using deforming autoencoders[M]. Berlin: Springer, 2020, 236- 241. |
20 | HE Z Y, CHUNG A C S. Unsupervised end-to-end groupwise registration framework without generating templates[C]// 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020: 375-379. |
21 |
DALCA A V, BALAKRISHNAN G, GUTTAG J, et alUnsupervised learning of probabilistic diffeomorphic registration for images and surfaces[J]. Med Image Anal, 2019,57,226- 236.
doi: 10.1016/j.media.2019.07.006 |
22 | BALAKRISHNAN G, ZHAO A, SABUNCU M R, et alVoxelmorph: a learning framework for deformable medical image registration[J]. IEEE T Med Imaging, 2019,1788- 1800. |
23 |
SHATTUCK D W, MIRZA M, ADISETIYO V, et alConstruction of a 3d probabilistic atlas of human cortical structures.[J]. Neuroimage, 2008,39 (3): 1064- 1080.
doi: 10.1016/j.neuroimage.2007.09.031 |
24 | 王远军, 刘玉基于图像集拓扑中心的群体配准方法[J]. 波谱学杂志, 2018,35 (4): 60- 67. |
WANG Y J, LIU YGroup registration method based on topological center of images[J]. Chinese J Magn Reson, 2018,35 (4): 60- 67. | |
25 | 蔡文琴, 王远军基于磁共振成像的人脑图谱构建方法研究进展[J]. 波谱学杂志, 2020,37 (2): 241- 253. |
CAI W Q, WANG Y JAdvances in the construction of the human brain map based on magnetic resonance imaging[J]. Chinese J Magn Reson, 2020,37 (2): 241- 253. | |
26 | 刘可文, 刘紫龙, 汪香玉, 等基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 2020,37 (2): 152- 161. |
LIU K W, LIU Z L, WANG X Y, et alProstate magnetic resonance image classification based on cascading convolutional neural networks[J]. Chinese J Magn Reso, 2020,37 (2): 152- 161. |
[1] | Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE. Applications of Generative Adversarial Networks in Medical Image Translation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 366-380. |
[2] | Ying-shan WANG,Ao-qi DENG,Jin-ling MAO,Zhong-qi ZHU,Jie SHI,Guang YANG,Wei-wei MA,Qing LU,Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315. |
[3] | Meng CHEN, Chen GENG, Yu-xin LI, Dao-ying GENG, Yi-fang BAO, Ya-kang DAI. Automatic Detection for Cerebral Aneurysms in TOF-MRA Images Based on Fuzzy Label and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 267-277. |
[4] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
[5] | Lu HUO,Xiao-xin HU,Qin XIAO,Ya-jia GU,Xu CHU,Luan JIANG. Automatic Segmentation of Breast and Fibroglandular Tissues in DCE-MR Images Based on nnU-Net [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 367-380. |
[6] | LIU Peng, ZHONG Yu-min, WANG Li-jia. Automatic Segmentation of Right Ventricle in Cine Cardiac Magnetic Resonance Image Based on a Dense and Multi-Scale U-net Method [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 456-468. |
[7] | ZHAO Shang-yi, WANG Yuan-jun. Classification of Alzheimer's Disease Patients Based on Magnetic Resonance Images and an Improved UNet++ Model [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 321-331. |
[8] | GONG Jin-chang, WANG Yu, WANG Yuan-jun. A Method for Segmentation of Glioma on Multimodal Magnetic Resonance Images Based on Wavelet Fusion and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 131-143. |
[9] | CHENG Hui-tao, WANG Shan-shan, KE Zi-wen, JIA Sen, CHENG Jing, QIU Zhi-lang, ZHENG Hai-rong, LIANG Dong. A Deep Recursive Cascaded Convolutional Network for Parallel MRI [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 437-445. |
[10] | SU Xin-yu, WANG Li-jia, NIE Sheng-dong, HU Li-wei, ZHONG Yu-min. Progress of Right Ventricle Segmentation from Short-Axis Images Acquired with Cardiac Cine MRI [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 377-391. |
[11] | WANG Yuan-jun, LIU Yu. A Groupwise Registration Method Based on Topology Center of Images [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 457-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||