Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (4): 523-532.doi: 10.11938/cjmr20212931
Previous Articles Next Articles
Chao-wei SHI,Pan SHI,Chang-lin TIAN*()
Received:
2021-07-02
Online:
2021-12-05
Published:
2021-08-26
Contact:
Chang-lin TIAN
E-mail:cltian@ustc.edu.cn
CLC Number:
Chao-wei SHI,Pan SHI,Chang-lin TIAN. NMR Studies of Large Protein Dynamics Using Unnatural Amino Acids[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 523-532.
1 |
HENZLER-WILDMAN K , KERN D . Dynamic personalities of proteins[J]. Nature, 2007, 450 (7172): 964- 972.
doi: 10.1038/nature06522 |
2 |
MERRIFIELD R B . Solid phase peptide synthesis. I. the synthesis of a tetrapeptide[J]. J Am Chem Soc, 1963, 85 (14): 2149- 2154.
doi: 10.1021/ja00897a025 |
3 |
YU H M , CHEN S T , WANG K T . Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation[J]. J Org Chem, 1992, 57 (18): 4781- 4784.
doi: 10.1021/jo00044a001 |
4 |
GORDON C P . The renascence of continuous-flow peptide synthesis-an abridged account of solid and solution-based approaches[J]. Org Biomol Chem, 2018, 16 (2): 180- 196.
doi: 10.1039/C7OB02759A |
5 |
FANG G M , LI Y M , SHEN F , et al. Protein chemical synthesis by ligation of peptide hydrazides[J]. Angew Chem Int Ed Engl, 2011, 50 (33): 7645- 7649.
doi: 10.1002/anie.201100996 |
6 |
LIU J J , HORST R , KATRITCH V , et al. Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR[J]. Science, 2012, 335 (6072): 1106- 1110.
doi: 10.1126/science.1215802 |
7 |
LUCHETTE P A , PROSSER R S , SANDERS C R . Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy[J]. J Am Chem Soc, 2002, 124 (8): 1778- 1781.
doi: 10.1021/ja016748e |
8 |
SALWICZEK M , SAMSONOV S , VAGT T , et al. Position-dependent effects of fluorinated amino acids on the hydrophobic core formation of a heterodimeric coiled coil[J]. Chemistry, 2009, 15 (31): 7628- 7636.
doi: 10.1002/chem.200802136 |
9 |
HATTORI Y , HEIDENREICH D , ONO Y , et al. Protein 19F-labeling using transglutaminase for the NMR study of intermolecular interactions[J]. J Biomol NMR, 2017, 68 (4): 271- 279.
doi: 10.1007/s10858-017-0125-6 |
10 |
LARDA S T , BOKOCH M P , EVANICS F , et al. Lysine methylation strategies for characterizing protein conformations by NMR[J]. J Biomol NMR, 2012, 54 (2): 199- 209.
doi: 10.1007/s10858-012-9664-z |
11 |
LUCK L A , FALKE J J . 19F NMR studies of the D-galactose chemosensory receptor. 1. Sugar binding yields a global structural change[J]. Biochemistry, 1991, 30 (17): 4248- 4256.
doi: 10.1021/bi00231a021 |
12 |
LI H , FRIEDEN C . NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: evidence for conformational heterogeneity in the native state[J]. Biochemistry, 2005, 44 (7): 2369- 2377.
doi: 10.1021/bi047600l |
13 |
ROPSON I J , BOYER J A , DALESSIO P M . A residual structure in unfolded intestinal fatty acid binding protein consists of amino acids that are neighbors in the native state[J]. Biochemistry, 2006, 45 (8): 2608- 3617.
doi: 10.1021/bi052091o |
14 |
ANDERLUH G , RAZPOTNIK A , PODLESEK Z , et al. Interaction of the eukaryotic pore-forming cytolysin equinatoxin Ⅱ with model membranes: 19F NMR studies[J]. J Mol Biol, 2005, 347 (1): 27- 39.
doi: 10.1016/j.jmb.2004.12.058 |
15 |
BANN J G , PINKNER J , HULTGREN S J , et al. Real-time and equilibrium 19F-NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD[J]. Proc Natl Acad Sci U S A, 2002, 99 (2): 709- 714.
doi: 10.1073/pnas.022649599 |
16 |
LEE H W , SOHN J H , YEH B I , et al. 19F NMR investigation of F(1)-ATPase of Escherichia coli using fluorotryptophan labeling[J]. J Biochem, 2000, 127 (6): 1053- 1056.
doi: 10.1093/oxfordjournals.jbchem.a022697 |
17 |
ZHANG Y , WANG L , SCHULTZ P G , et al. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine[J]. Protein Sci, 2005, 14 (5): 1340- 1349.
doi: 10.1110/ps.041239305 |
18 |
YOUNG T S , AHMAD I , YIN J A , et al. An enhanced system for unnatural amino acid mutagenesis in E. coli[J]. J Mol Biol, 2010, 395 (2): 361- 374.
doi: 10.1016/j.jmb.2009.10.030 |
19 |
HORST R , LIU J J , STEVENS R C , et al. beta(2)-adrenergic receptor activation by agonists studied with 19F NMR spectroscopy[J]. Angew Chem Int Ed Engl, 2013, 52 (41): 10762- 10765.
doi: 10.1002/anie.201305286 |
20 |
WANG H X , HU W H , LIU D S , et al. Design and preparation of the class B G protein-coupled receptors GLP-1R and GCGR for 19F-NMR studies in solution[J]. FEBS J, 2021, 288 (13): 4053- 4063.
doi: 10.1111/febs.15686 |
21 |
MA X Y , HU Y F , BATEBI H , et al. Analysis of beta2AR-Gs and beta2AR-Gi complex formation by NMR spectroscopy[J]. Proc Natl Acad Sci U S A, 2020, 117 (37): 23096- 23105.
doi: 10.1073/pnas.2009786117 |
22 |
STERNBERG U , KLIPFEL M , GRAGE S L , et al. Calculation of fluorine chemical shift tensors for the interpretation of oriented 19F-NMR spectra of gramicidin A in membranes[J]. Phys Chem Chem Phys, 2009, 11 (32): 7048- 7060.
doi: 10.1039/b908236k |
23 |
KHAN F , KUPROV I , CRAGGS T D , et al. 19F NMR studies of the native and denatured states of green fluorescent protein[J]. J Am Chem Soc, 2006, 128 (33): 10729- 10737.
doi: 10.1021/ja060618u |
24 |
EVANICS F , BEZSONOVA I , MARSH J , et al. Tryptophan solvent exposure in folded and unfolded states of an SH3 domain by 19F and 1H NMR[J]. Biochemistry, 2006, 45 (47): 14120- 14128.
doi: 10.1021/bi061389r |
25 |
YE Y S , LIU X L , XU G H , et al. Direct observation of Ca2+-induced calmodulin conformational transitions in intact Xenopus laevis oocytes by 19F NMR spectroscopy[J]. Angew Chem Int Ed Engl, 2015, 54 (18): 5328- 5330.
doi: 10.1002/anie.201500261 |
26 | SPEER S L, ZHENG W, JIANG X, et al. The intracellular environment affects protein-protein interactions[J]. Proc Natl Acad Sci U S A, 2021, 118(11): e2019918118. |
27 |
YE Y S , WU Q , ZHENG W W , et al. Quantification of size effect on protein rotational mobility in cells by 19F NMR spectroscopy[J]. Anal Bioanal Chem, 2018, 410 (3): 869- 874.
doi: 10.1007/s00216-017-0745-4 |
28 |
SHI P , XI Z Y , WANG H , et al. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded 15N/19F-labeled unnatural amino acid[J]. Biochem Biophys Res Commun, 2010, 402 (3): 461- 466.
doi: 10.1016/j.bbrc.2010.10.046 |
29 |
SHI P , WANG H , XI Z Y , et al. Site-specific 19F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid[J]. Protein Sci, 2011, 20 (1): 224- 228.
doi: 10.1002/pro.545 |
30 |
SHI P , LI D , CHEN H , et al. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and 19F nuclear magnetic resonance[J]. Biochem Biophys Res Commun, 2011, 414 (2): 379- 383.
doi: 10.1016/j.bbrc.2011.09.082 |
31 |
SHI P , LI D , LAI C H , et al. Intracellular segment between transmembrane helices S0 and S1 of BK channel alpha subunit contains two amphipathic helices connected by a flexible loop[J]. Biochem Biophys Res Commun, 2013, 437 (3): 408- 412.
doi: 10.1016/j.bbrc.2013.06.091 |
32 |
SHI P , LI D , CHEN H W , et al. In situ 19F NMR studies of an E. coli membrane protein[J]. Protein Sci, 2012, 21 (4): 596- 600.
doi: 10.1002/pro.2040 |
33 |
GUO X , WANG L , LI J , et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A[J]. Nature, 2015, 517 (7536): 640- 644.
doi: 10.1038/nature13899 |
34 |
LI Y J , HAN J M , ZHANG Y B , et al. Structural basis for activity regulation of MLL family methyltransferases[J]. Nature, 2016, 530 (7591): 447- 452.
doi: 10.1038/nature16952 |
35 |
ZHU K , SHAN Z , CHEN X , et al. Allosteric auto-inhibition and activation of the Nedd4 family E3 ligase Itch[J]. EMBO Rep, 2017, 18 (9): 1618- 1630.
doi: 10.15252/embr.201744454 |
36 |
YANG F , YU X , LIU C , et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F NMR[J]. Nat Commun, 2015, 6, 8202.
doi: 10.1038/ncomms9202 |
37 |
LIU Q , HE Q T , LYU X , et al. DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1H-NMR probe[J]. Nat Commun, 2020, 11 (1): 4857.
doi: 10.1038/s41467-020-18433-5 |
38 |
HE Q T , XIAO P , HUANG S M , et al. Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2[J]. Nat Commun, 2021, 12 (1): 2396.
doi: 10.1038/s41467-021-22731-x |
39 |
LI D , LI J , ZHUANG Y L , et al. Nano-size uni-lamellar lipodisq improved in situ auto-phosphorylation analysis of E. coli tyrosine kinase using 19F nuclear magnetic resonance[J]. Protein Cell, 2015, 6 (3): 229- 233.
doi: 10.1007/s13238-014-0129-x |
40 |
LI D , ZHANG Y N , HE Y , et al. Protein-protein interaction analysis in crude bacterial lysates using combinational method of 19F site-specific incorporation and 19F NMR[J]. Protein Cell, 2017, 8 (2): 149- 154.
doi: 10.1007/s13238-016-0336-8 |
41 |
POLENOVA T , GUPTA R , GOLDBOURT A . Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems[J]. Anal Chem, 2015, 87 (11): 5458- 5469.
doi: 10.1021/ac504288u |
42 |
ROOS M , WANG T , SHCHERBAKOV A A , et al. Fast magic-angle-spinning 19F spin exchange NMR for determining nanometer 19F-19F distances in proteins and pharmaceutical compounds[J]. J Phys Chem B, 2018, 122 (11): 2900- 2911.
doi: 10.1021/acs.jpcb.8b00310 |
43 |
SHCHERBAKOV A A , HONG M . Rapid measurement of long-range distances in proteins by multidimensional 13C-19F REDOR NMR under fast magic-angle spinning[J]. J Biomol NMR, 2018, 71 (1): 31- 43.
doi: 10.1007/s10858-018-0187-0 |
44 |
XUE K , SARKAR R , MOTZ C , et al. Limits of resolution and sensitivity of proton detected MAS solid-state NMR experiments at 111 kHz in deuterated and protonated proteins[J]. Sci Rep, 2017, 7 (1): 7444.
doi: 10.1038/s41598-017-07253-1 |
[1] | ZHANG Zhi-jie, LI Duan-xiu, LUO Chun, QIU Ru-chen, DENG Zong-wu, ZHANG Hai-lu. 13C Chemical Shift Assignment of Solid 2-Picolinic Acid by DFT/Crystallography Integrated Approach [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 67-75. |
[2] | GAO Xiu-zhi, ZHANG Yi, WANG Xiu-mei, ZHANG Zhi-hua, XU Guang-tong. Structure and Acidity Changes in Ultra-Stable Y Zeolites During Hydrothermal Aging: A Solid-State NMR Spectroscopy Study [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 95-103. |
[3] | FENG Zong-jing, DU Ya-ping, LUO Feng, XU Jun. An Ultrawide-Line 139La Solid-State NMR Investigation of Layered La(OH)2NO3 [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 76-85. |
[4] | WANG Yang, YANG Chang-ju, WEN Yu-jie, CHEN Jun-chao, DU Jia-huan, PENG Lu-ming. Analysis of the Concentrations of Surface Ni Ions in Ni/CeO2 With 17O Solid-State NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 52-60. |
[5] | XU Guang-yong, DONG Man-yuan, MA Jian-feng, ZHANG Li-min. Molecular Dynamics of Semi-Crystalline Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Studies by Solid-State NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 544-554. |
[6] | XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251. |
[7] | GE Yu-wei, LIU Mai-li, GAN Zhe-hong, LI Cong-gang. Measurements of Proton Chemical Shift Anisotropy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 255-267. |
[8] | JIANG Ting-ting, FU Xiao-bin, WU Jin-ze, WANG Jia-chen, YAO Ye-feng, ZHOU Bing. Structure and Dynamics of Polymer-Ceramic Interface in Li1.5Al0.5Ge1.5P3O12/Polyether Solid Electrolyte:A Solid-State NMR Study [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 429-438. |
[9] | SUN Yi, CHEN Yan-ke, LI Jian-ping, ZHAO Yong-xiang, YANG Jun. Efficiency of Double Cross Polarization in Magic-Angle Spinning Solid-State NMR Studies on Membrane Proteins [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 257-265. |
[10] | LI Dong-bei, XU Shuai, YU Zhi-wu. Application of Solid-State NMR to Bone and Bone Biomaterials [J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 115-129. |
[11] | WANG Hua-pu, ZHU Qin-jun, LIU Mai-li, YANG Yun-huang, YUE Xia-li. Expression,Purification and Characterization of the Zinc-Finger (4-5) Domain in Human Protein INSM1 [J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 1-7. |
[12] | PENG Yong-jin, SUN Ping-chuan, LI Bao-hui. Dynamic Evolution in PVPh/PEO Blend Studied by Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 188-197. |
[13] | HAN Ming-yue,ZHENG Hui,HU Bing-wen*,YANG Guang*. Compressed Sensing Reconstruction with Iterative Soft Thresholding for Two-Dimensional Solid-State NMR Spectra with Broad Peaks [J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 551-562. |
[14] | XU Wei-jing,LIU Qing-hua,HU Bing-wen*,CHEN Qun. Structures of Crystalline Poly(ethyl oxide)/LiAsF6 Complexes Determined by Solid-State High-Resolution 13C Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 399-408. |
[15] | DING Li-hong1,2,LIU Xiao-long2,WANG Qiang2,LIU Wen-tao1,ZHU Cheng-shen1,ZHENG An-min2,DENG Feng2*. Solid-State NMR Studies of TBA3[VW5O19] and TBA4[PVW11O40] [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 409-418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||