Chinese Journal of Magnetic Resonance ›› 2020, Vol. 37 ›› Issue (4): 533-546.doi: 10.11938/cjmr20202805
• Review Articles • Previous Articles
CHENG Li-wei1,2, WANG Lu-lu2, ZHONG Kai2
Received:
2020-02-04
Online:
2020-11-05
Published:
2020-05-13
CLC Number:
CHENG Li-wei, WANG Lu-lu, ZHONG Kai. Application of fMRI in Transcranial Direct Current Stimulation Researches[J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 533-546.
[1] LEFAUCHEUR J P, ANTAL A, AYACHE S, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS)[J]. Clin Neurophysiol, 2017, 128(1):56-92. [2] LOLAS F. Brain polarization-behavioral and therapeutic effects[J]. Biol Psychiatry, 1977, 12(1):37-47. [3] DYMOND A M, COGER R W, SERAFETINIDES E A. Intracerebral current levels in man during electrosleep therapy[J]. Biol Psychiatry, 1975, 10(1):101-104. [4] OGAWA S, LEE T M, NAYAK A S, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields[J]. Magn Reson Med, 1990, 14(1):68-78. [5] BAUDEWIG J, NITSCHE M A, PAULUS W, et al. Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation[J]. Magn Reson Med, 2001, 45(2):196-201. [6] CAVALIERE C, AIELLO M, DI PERRI C, et al. Functional connectivity substrates for tdcs response in minimally conscious state patients[J]. Front Cell Neurosci, 2016, 10:257. [7] BINDMAN L J, LIPPOLD O C, REDFEARN J W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects[J]. J Physiol, 1964, 172(3):369-382. [8] NITSCHE M A, PAULUS W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527(Pt 3):633-639. [9] KASAHARA K, TANAKA S, HANAKAWA T, et al. Lateralization of activity in the parietal cortex predicts the effectiveness of bilateral transcranial direct current stimulation on performance of a mental calculation task[J]. Neurosci Lett, 2013, 545:86-90. [10] KABAKOV A Y, MULLER P A, PASCUAL-LEONE A, et al. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus[J]. J Neurophysiol, 2012, 107(7):1881-1889. [11] BATSIKADZE G, MOLIADZE V, PAULUS W, et al. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans[J]. J Physiol, 2013, 591(7):1987-2000. [12] WAGNER T, FREGNI F, FECTEAU S, et al. Transcranial direct current stimulation:a computer-based human model study[J]. Neuroimage, 2007, 35(3):1113-1124. [13] KWON O I, SAJIB S Z K, SERSA I, OH T I, et al. Current density imaging during transcranial direct current stimulation using DT-MRI and MREIT:Algorithm development and numerical simulations[J]. IEEE Trans Biomed Eng, 2016, 63(1):168-175. [14] POLANIA R, PAULUS W, NITSCHE M A. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation[J]. Hum Brain Mapp, 2012, 33(10):2499-2508. [15] DYMOND A M, COGER R W, SERAFETINIDES E A. Intracerebral current levels in man during electrosleep therapy[J]. Biol Psychiatry, 1975, 10(1):101-104. [16] RUOHONEN J, KARHU J. tDCS possibly stimulates glial cells[J]. Clin Neurophysiol, 2012, 123(10):2006-2009. [17] BRAUN R, KLEIN R, WALTER H L, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke[J]. Exp Neurol, 2016, 279:127-136. [18] PELLETIER S J, LAGACE M, ST-AMOUR I, et al. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation[J]. Int J Neuropsychopharmacol, 2015, 18(5):pyu090. [19] TOSCHI F, LUGLI F, BISCARINI F, et al. Effects of electric field stress on a beta-amyloid peptide[J]. J Phys Chem B, 2009, 113(1):369-376. [20] COFFMAN B A, CLARK V P, PARASURAMAN R. Battery powered thought:enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation[J]. Neuroimage, 2014, 85(3):895-908. [21] ZHOU P, WEI J W, SUN C, et al. Research advancements in the regulation of transcranial direct current stimulation (tDCS) for cerebral cognitive function[J]. Chinese J Biomedical Engineering, 2018, 37(2):208-214. 周鹏, 魏晋文, 孙畅, 等. 经颅直流电刺激调控大脑认知功能的研究进展[J]. 中国生物医学工程学报, 2018, 37(2):208-214. [22] FILIPPI M, AGOSTA F. Diffusion tensor imaging and functional MRI[M]//Neuroimaging Part II. Handb Clin Neurol, 2016, 136:1065-1087. [23] CORDES D, TURSKI P A, SORENSON J A. Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications[J]. Magn Reson Imaging, 2000, 18(9):1055-1068. [24] NIU M, LIU J L, ZHANG L. Modern Medicine & Health, 2008, 24(18):2754-2756. 牛猛, 刘嘉利, 张磊. FMRI脑功能磁共振成像的原理及应用进展[J]. 现代医药卫生, 2008, 24(18):2754-2756. [25] FRISTON K. Causal modelling and brain connectivity in functional magnetic resonance imaging[J]. PLoS Biol, 2009, 7(2):e33. [26] SMITHA K A, AKHIL RAJA K, ARUN K M, et al. Resting state fMRI:A review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4):305-317. [27] WOODS A J, HAMILTON R H, KRANJEC A, et al. Space, time, and causality in the human brain[J]. Neuroimage, 2014, 92:285-297. [28] DEBENER S, BEAUDUCEL A, NESSLER D, et al. Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients[J]. Neuropsychobiology, 2000, 41(1):31-37. [29] BULUBAS L, PADBERG F, BUENO P V, et al. Antidepressant effects of tDCS are associated with prefrontal gray matter volumes at baseline:Evidence from the ELECT-TDCS trial[J]. Brain Stimul, 2019, 12(5):1197-1204. [30] PADBERG F, KUMPF U, MANSMANN U, et al. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression:study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC)[J]. Eur Arch Psychiatry Clin Neurosci, 2017, 267(8):751-766. [31] CSIFCSAK G, BOAYUE N M, PUONTI O, et al. Effects of transcranial direct current stimulation for treating depression:A modeling study[J]. J Affect Disorders, 2018, 234:164-173. [32] PALM U, HASAN A, STRUBE W, et al. tDCS for the treatment of depression:a comprehensive review[J]. Eur Arch Psychiatry Clin Neurosci, 2016, 266(8):681-694. [33] KOENIGS M, GRAFMAN J. The functional neuroanatomy of depression:Distinct roles for ventromedial and dorsolateral prefrontal cortex[J]. Behav Brain Res, 2009, 201(2):239-243. [34] THIBAUT A, CARVALHO S, MORSE L R, et al. Delayed pain decrease following M1 tDCS in spinal cord injury:A randomized controlled clinical trial[J]. Neurosci Lett, 2017, 658:19-26. [35] NAEGEL S, BIERMANN J, THEYSOHN N, et al. Polarity-specific modulation of pain processing by transcranial direct current stimulation-a blinded longitudinal fMRI study[J]. J Headache Pain, 2018, 19(1):99. [36] NGUYEN J P, NIZARD J, KERAVEL Y, et al. Invasive brain stimulation for the treatment of neuropathic pain[J]. Nat Rev Neurol, 2011, 7(12):699-709. [37] NEEB L, BAYER A, BAYER K E, et al. Transcranial direct current stimulation in inflammatory bowel disease patients modifies resting-state functional connectivity:A RCT[J]. Brain Stimul, 2019, 12(4):978-980. [38] LIN R L, DOUAUD G, FILIPPINI N, et al. Tracey I. Structural connectivity variances underlie functional and behavioral changes during pain relief induced by neuromodulation[J]. Sci Rep, 2017, 7:41603. [39] ANTAL A, KRIENER N, LANG N, et al. Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine[J]. Cephalalgia, 2011, 31(7):820-828. [40] MANOLA L, ROELOFSEN B H, HOLSHEIMER J, et al. Modelling motor cortex stimulation for chronic pain control:electrical potential field, activating functions and responses of simple nerve fibre models[J]. Med Biol Eng Comput, 2005, 43(3):335-43. [41] CASTILLO-SAAVEDRA L, GEBODH N, BIKSON M, et al. Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation:phase II open-label dose optimization[J]. J Pain, 2016, 17(1):14-26. [42] CUMMIFORD C M, NASCIMENTO T D, FOERSTER B R, et al. Changes in resting state functional connectivity after repetitive transcranial direct current stimulation applied to motor cortex in fibromyalgia patients[J]. Arthritis Res Ther, 2016, 18:40. [43] KANI A S, SHINN A K, LEWANDOWSKI K E, et al. Converging effects of diverse treatment modalities on frontal cortex in schizophrenia:A review of longitudinal functional magnetic resonance imaging studies[J]. Psychiatr Res, 2017, 84:256-276. [44] MONDINO M, HAESEBAERT F, POULET E, et al. Fronto-temporal transcranial Direct Current Stimulation (tDCS) reduces source-monitoring deficits and auditory hallucinations in patients with schizophrenia[J]. Schizophr Res, 2015, 161(2,3):515-516. [45] MONDINO M, JARDRI R, SUAUD-CHAGNY M F, et al. Effects of Fronto-temporal transcranial direct current stimulation on auditory verbal hallucinations and resting-state functional connectivity of the left temporo-parietal junction in patients with schizophrenia[J]. Schizophr Bull, 2016, 42(2):318-326. [46] PALM U, KEESER D, BLAUTZIK J, et al. Prefrontal transcranial direct current stimulation (tDCS) changes negative symptoms and functional connectivity MRI (fcMRI) in a single case of treatment-resistant schizophrenia[J]. Schizophr Res, 2013, 150(2-3):583-585. [47] LANG N, SIEBNER H R, WARD N S, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?[J]. Eur J Neurosci, 2005, 22(2):495-504 [48] DI PINO G, PELLEGRINO G, ASSENZA G, et al. Modulation of brain plasticity in stroke:a novel model for neurorehabilitation[J]. Nat Rev Neurol, 2014, 10(10):597-608. [49] NOWAK M, HINSON E, VAN EDE F, et al. Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABA(A) inhibition:A tACS-TMS study[J]. J Neurosci, 2017, 37(17):4481-4492. [50] BACHTIAR V, JOHNSTONE A, BERRINGTON A, et al. Modulating regional motor cortical excitability with noninvasive brain stimulation results in neurochemical changes in bilateral motor cortices[J]. Neurosci, 2018, 38(33):7327-7336. [51] FIGLEWSKI K, BLICHER J U, MORTENSEN J, et al. Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy[J]. Stroke, 2017, 48(1):229-232. [52] WARD N S. Non-invasive brain stimulation for stroke recovery:ready for the big time?[J]. J Neurol Neurosur Ps, 2016, 87(4):343-344. [53] KLOMJAI W, LACKMY-VALLEE A, ROCHE N, et al. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after stroke:an update[J]. Ann Phys Rehabil Med, 2015, 58(4):220-224. [54] ALLMAN C, AMADI U, WINKLER A M, et al. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke[J]. Sci Transl Med, 2016, 8(330):330re1. [55] BENNINGER D H, LOMAREV M, LOPEZ G, et al. Transcranial direct current stimulation for the treatment of Parkinson's disease[J]. J Neurol Neurosur Ps, 2010, 81(10):1105-1111. [56] GALEA J M, JAYARAM G, AJAGBE L, et al. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation[J]. Neurosci, 2009, 29(28):9115-9122. [57] D'MELLO A M, TURKELTAUB P E, STOODLEY C J. Cerebellar tDCS modulates neural circuits during semantic prediction:A combined tDCS-fMRI Study[J]. Neurosci, 2017, 37(6):1604-1613. [58] FERRUCCI R, CORTESE F, BIANCHI M, et al. Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson's disease[J]. Cerebellum, 2016, 15(1):43-47. [59] FRESNOZA S, PAULUS W, NITSCHE M A, et al. Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans[J]. Neurosci, 2014, 34(7):2744-2753. [60] VALENTINO F, COSENTINO G, BRIGHINA F, et al. Transcranial direct current stimulation for treatment of freezing of gait:a cross-over study[J]. Mov Disord, 2014, 29(8):1064-1069. [61] SCHOELLMANN A, SCHOLTEN M, WASSERKA B, et al. Anodal tDCS modulates cortical activity and synchronization in Parkinson's disease depending on motor processing[J]. Neuroimage Clin, 2019, 22:101689. [62] CESPON J, RODELLA C, MINIUSSI C, et al. Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer's disease patients:A pilot study[J]. Clin Neurophysiol, 2019, 130(11):2038-2052. [63] MEINZER M, LINDENBERG R, PHAN M T, et al. Transcranial direct current stimulation in mild cognitive impairment:Behavioral effects and neural mechanisms[J]. Alzheimers Dement, 2015, 11(9):1032-1140. [64] BYSTAD M, GRONLI O, RASMUSSEN I D, et al. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer's disease:a randomized, placebo-controlled trial[J]. Alzheimers Res Ther, 2016, 8(1):13. [65] FICEK B N, WANG Z, ZHAO Y, et al. The effect of tDCS on functional connectivity in primary progressive aphasia[J]. Neuroimage Clin, 2018, 19:703-715. [66] FIORI V, KUNZ L, KUHNKE P, et al. Transcranial direct current stimulation (tDCS) facilitates verb learning by altering effective connectivity in the healthy brain[J]. Neuroimage, 2018, 181:550-559. [67] ALEKSEICHUK I, DIERS K, PAULUS W, et al. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity:A combined tES-fMRI approach[J]. Neuroimage, 2016, 140:110-117. [68] ROSSI S, ROSSINI P M. TMS in cognitive plasticity and the potential for rehabilitation[J]. Trends Cogn Sci, 2004, 8(6):273-279. [69] FLÖEL A. tDCS-enhanced motor and cognitive function in neurological diseases[J]. Neuroimage, 2014, 85:934-947. [70] KRAUSE M R, VIEIRA P G, CSORBA B A, et al. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain[J]. Proc Natl Acad Sci U S A, 2019, 116(12):5747-5755. [71] EDEMANN-CALLESEN H, HABELT B, WIESKE F, et al. Non-invasive modulation reduces repetitive behavior in a rat model through the sensorimotor cortico-striatal circuit[J]. Transl Psychiatry, 2018, 8(1):11. [72] KIM H J, HAN S J. Anodal Transcranial direct current stimulation provokes neuroplasticity in repetitive mild traumatic brain injury in rats[J]. Neural Plast, 2017:1372946. [73] TAKANO Y, YOKAWA T, MASUDA A, et al. A rat model for measuring the effectiveness of transcranial direct current stimulation using Fmri[J]. Neurosci Lett, 2011, 491(1):40-43. [74] BEWERNICK B H, HURLEMANN R, MATUSCH A, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression[J]. Biol Psychiatry, 2010, 67(2):110-116. [75] ANTONENKO D, THIELSCHER A, SATURNINO G B, et al. Towards precise brain stimulation:Is electric field simulation related to neuromodulation?[J]. Brain Stimul, 2019, 12(5):1159-1168. [76] CIOBANU L, SOLOMON E, PYATIGORSKAYA N, et al. fMRI contrast at high and ultrahigh magnetic fields:insight from complementary methods[J]. Neuroimage, 2015, 113:37-43. [77] SALLET J, MARS R B, NOONAN M P, et al. The organization of dorsal frontal cortex in humans and macaques[J]. J Neurosci, 2013, 33(30):12255-12274. [78] MINKINA I, ROSENBERG S, KALINYAK-FLISZAR M, et al. Short-term memory and aphasia:from theory to treatment[J]. Semin Speech Lang, 2017, 38(1):17-28. [79] CLARK M, STEGER-HARTMANN T. A big data approach to the concordance of the toxicity of pharmaceuticals in animals and humans[J]. Regul Toxicol Pharmacol, 2018, 96:94-105. [80] TYSNES OB, STORSTEIN A. Epidemiology of Parkinson's disease[J]. J Neural Transm-supp, 2017, 124(8):901-905. [81] OLSON H, BETTON G, ROBINSON D, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals[J]. Regul Toxicol Pharmacal, 2000, 32(1):56-67. [82] DUNLOP K, HANLON CA, DOWNAR J. Noninvasive brain stimulation treatments for addiction and major depression[J]. Ann N Y Acad Sci, 2017, 1394(1):31-54. [83] WORSCHING J, PADBERG F, HELBICH K, et al. Test-retest reliability of prefrontal transcranial direct current stimulation (tDCS) effects on functional MRI connectivity in healthy subjects[J]. Neuroimage, 2017, 155:187-201. [84] TREMBLAY S, LEPAGE J F, LATULIPE-LOISELLE A, et al. The uncertain outcome of prefrontal tDCS[J]. Brain Stimul, 2014, 7(6):773-783. [85] SPORNS O. Contributions and challenges for network models in cognitive neuroscience[J]. Nat Neurosci, 2014, 17(5):652-660. [86] SANDRINI M, XU B, VOLOCHAYEV R, et al. Transcranial direct current stimulation facilitates response inhibition through dynamic modulation of the fronto-basal ganglia network[J]. Brain Stimul, 2020, 13(1):96-104. [87] ESMAEILPOUR Z, SHEREEN A D, GHOBADI-AZBARI P, et al. Methodology for tDCS integration with fMRI[J]. Hum Brain Mapp, 2019, 41(4):1950-1967. |
[1] | ZHU Ze-hua, YAN Shi-ju, RUAN Yuan, HAN Bang-min. Segmentation of Prostate Magnetic Resonance Images Based on an Improved Distance Regularized Level Set Evolution (DRLSE) Model [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 447-455. |
[2] | LIU Si, AN Yan-peng, TANG Hui-ru. Effects of Lyophilization on the Metabonomic Phenotypes of Human Biofluids Characterized with NMR Analysis [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 484-489. |
[3] | LIU Peng, ZHONG Yu-min, WANG Li-jia. Automatic Segmentation of Right Ventricle in Cine Cardiac Magnetic Resonance Image Based on a Dense and Multi-Scale U-net Method [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 456-468. |
[4] | LI Ying-jun, YANG Hong-jing, LIU Ji-hong, JIN Kun, LIN Le-di, LIU Xue-jie. Assignments of NMR Spectral Data of a Novel Carbazole-Triazinoindole Based N-Acylhydrazone Derivative [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 496-504. |
[5] | ZHOU Zhong-gao, XIE Qian, YUAN Yang-yang, LI Jing, LU Dong-liang, CHEN Zheng-wang. An NMR Study of Chiral Glucopyranosyl-Based N-Heterocyclic Carbene-Palladium(II)-Pyridine Complex [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 505-514. |
[6] | KE Han-ping, CAI Hong-hao. High-Resolution Localized NMR Spectroscopy Based on Hadamard-Encoding [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 524-532. |
[7] | WANG Wan-ting, SU Shi, JIA Sen, LIANG Dong, WANG Hai-feng. Reconstruction of Simultaneous Multi-Slice MRI Data by Combining Virtual Conjugate Coil Technology and Convolutional Neural Network [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 407-421. |
[8] | LUO Yuan, ZHU Kai-ran. A Phase-Controllable Nuclear Quadrupole Resonance Excitation Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 515-523. |
[9] | WU Ming-di, FENG Jie, JIA Hui-hui, WU Ji-zhi, ZHANG Xin, CHANG Yan, YANG Xiao-dong, SHENG Mao. MRI-Based Morphological Quantification of Developmental Dysplasia of the Hip in Children [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 434-446. |
[10] | BAO Qiu-lian, YANG Yun-han, WEI Ke-ke, LUO Jian-ping, GU Jie, LU Jia-jia, YANG Li-juan. Complexation Analysis of Water-Soluble Phosphate Salt Pillar[5]arene with Acridine Orange [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 469-483. |
[11] | DOU Meng-yu ZHAO Qi HOU Xiang-lin LIU Lei TANG Ming-xing WANG Ying-xiong. Structural Assignment and Quantitative Analysis for Hydrogenation Products of Anthracene by NMR Technology [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[12] | WEN Liang, LI Chun-fa. Structure and Configuration Analyses of a Nucleating Agent for Isotactic Polypropylene Crystallization [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 291-299. |
[13] | XU Peng-cheng, XIAO Liang. A Design Scheme for Data Transmission Module on Multi-Channel Magnetic Resonance Imaging Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 283-290. |
[14] | ZHAN Jia-ying, TU Zhang-ren, DU Xiao-feng, YUAN Bin, GUO Di, QU Xiao-bo. Progresses on Low-Rank Reconstruction for Non-Uniformly Sampled NMR Spectra [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 255-272. |
[15] | LIAO Zhi-wen, CHEN Jun-fei, YANG Chun-sheng, ZHANG Zhi, CHEN Li, XIAO Li-zhi, CHEN Fang, LIU Chao-yang. A Design Scheme for 1H/31P Dual-Nuclear Parallel MRI Coil [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 273-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||