[1] LEI Z Y, LIANG X M, LEI Y Y, et al. Process in solid-state NMR studies on carbon anode materials for lithium/sodium-ion batteries[J]. Chinese J Magn Reson, 2020, 37(1):28-39. 雷振宇, 梁欣苗, 雷友义, 等. 固体核磁共振技术在锂/钠离子电池碳负极中的应用及研究进展[J]. 波谱学杂志, 2020, 37(1):28-39. [2] JIANG T T, FU X B, WU J Z, et al. Structure and dynamics of polymer-ceramic interface in Li1.5Al0.5Ge1.5P3O12/polyether solid electrolyte:a solid-state NMR study.[J]. Chinese J Magn Reson, 2017, 34(4):429-438. 姜婷婷, 付晓彬, 吴金泽, 等. Li1.5Al0.5Ge1.5P3O12/高分子固体电解质表界面结构与分子运动的固体NMR研究[J] 波谱学杂志, 2017, 34(4):429-438. [3] YIN S C, GRONDEY H, STROBEL P, et al. Charge ordering in lithium vanadium phosphates:electrode materials for lithium-ion batteries[J]. J Am Chem Soc, 2003, 125(2):326-327. [4] YIN S C, GRONDEY H, STROBEL P, et al. Electrochemical property:structure relationships in monoclinic Li3-YV2(PO4)3[J]. J Am Chem Soc, 2003, 125(34):10402-10411. [5] RUI X H, DING N, LIU J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material[J]. Electrochim Acta, 2010, 55(7):2384-2390. [6] LEE S, PARK S S. Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for lithium ion battery:structure, defect chemistry, lithium ion transport pathway, and dynamics[J]. J Phys Chem C, 2012, 116(48):25190-25197. [7] CAHILL L S, CHAPMAN R P, BRITTEN J F, et al. 7Li NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)3[J]. J Phys Chem B, 2006, 110(14):7171-7177. [8] CAHILL L S, KIRBY C W, GOWARD G R, et al. 6Li{31P} rotational-echo, double-resonance studies of lithium ion site dynamics in Li3V2(PO4)3[J]. J Phys Chem C, 2008, 112(6):2215-2221. [9] ROCA M, AMORÓS P, CANO J, et al. Prediction of magnetic properties in oxovanadium(IV) phosphates:the role of the bridging PO4 anions[J]. Inorg Chem, 1998, 37(13):3167-3174. [10] SANANES M T, TUEL A. Study by 31P NMR spin echo mapping of vanadium phosphorus oxide catalysts[J]. Solid State Nucl Magn Reson, 1996, 6(2):157-166. [11] GEE B, HORNE C R, CAIRNS E J, et al. Supertransferred hyperfine fields at 7Li:variable temperature 7Li NMR studies of LiMn2O4-based spinels[J]. J Phys Chem B, 1998, 102(50):10142-10149. [12] HUO H, LIN Z Y, WU D, et al. Investigating the structure of an active material-carbon interface in the monoclinic Li3V2(PO4)3/C composite cathode[J]. ACS Appl Energy Mater, 2019, 2(5):3692-3702. [13] CHEETHAM A K, CLAYDEN N J, DOBSON C M, et al. Correlations between 31P N.M.R. chemical shifts and structural parameters in crystalline inorganic phosphates[J]. J Chem Soc Chem Commun, 1986, 195-197. [14] ISHII Y, YANG D, VELAMAKANNI A, et al. Structural characterization of C-labeled graphite oxide[J]. Science, 2008, 321:1815-1818. [15] JAKUPOVIC J, SCHUSTER A, BOHLMANN F, et al. Lumiyomogin, ferreyrantholide, fruticolide and other sesquiterpene lactones from ferreyranthus fruticosus[J]. Phytochemistry, 1988, 27(4):1113-1120. [16] SUN S T, LI R H, MU D Y, et al. Magnesium/chloride co-doping of lithium vanadium phosphate cathodes for enhanced stable lifetime in lithium-ion batteries[J]. New J Chem, 2018, 42(16):13667-13673. [17] CASTETS A, CARLIER D, TRAD K, et al. Analysis of the 7Li NMR signals in the monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 phases[J]. J Phys Chem C, 2010, 114(44):19141-19150. [18] MONDAL A, GAULTOIS M W, PELL A J, et al. Large-scale computation of nuclear magnetic resonance shifts for paramagnetic solids using CP2K[J]. J Chem Theory Comput, 2018, 14(1):377-394. |