[1] MULKEY D K, RD H R, RITUCCI N A, et al. Oxidative stress decreases pH i and Na(+)/H(+) exchange and increases excitability of solitary complex neurons from rat brain slices[J]. Am J Physiol Cell Physiol, 2004, 286(4):C940-C951. [2] LAGADIC-GOSSMANN D, HUC L, LECUREUR V. Alterations of intracellular pH homeostasis in apoptosis:origins and roles[J]. Cell Death Differ, 2004, 11(9):953-961. [3] PEPPICELLI S, BIANCHINI F, CALORINI L. Extracellular acidity, a "reappreciated" trait of tumor environment driving malignan cy:perspectives in diagnosis and therapy[J]. Cancer Metast Rev, 2014, 33(2/3):823-832. [4] KHRAMTSOV V V. Biological imaging and spectroscopy of pH[J]. Curr Org Chem, 2005, 9(9):909-923. [5] HICKS R G. Functional in vivo EPR spectroscopy and imaging using nitroxide and trityl radicals[M]. Wiltshire:Antony Rowe Ltd, 2010. [6] FAN K, GUO J W, ZOU J R, et al. An EPR modulation magnetic field driving device for in vivo tooth dosimetry[J]. Chinese J Magn Reson, 2017, 34(3):365-371. 范凯, 郭俊旺, 邹洁芮, 等. EPR在体测量专用调制磁场驱动装置[J]. 波谱学杂志, 2017, 34(3):365-371. [7] ULLMAN E F, CALL L, OSIECKI J H. Stable free radicals. VⅢ. New imino, amidino, and carbamoyl nitroxides[J]. J Org Chem, 1970, 3623-3631. [8] KHRAMTSOV V V, WEINER L M, EREMENKO S I, et al. Proton exchange in stable nitroxyl radicals of the imidazoline and imidazolidine series[J]. J Magn Reson, 1985, 61(3):397-408. [9] ROCKENBAUER A, SZABO-PLANKA T, ARKOSI Z, et al. A two-dimensional (magnetic field and concentration) electron paramagnetic resonance method for analysis of multispecies complex equilibrium systems. Information content of EPR spectra[J]. J Am Chem Soc, 2001, 123(31):7646-7654. [10] CLEMENT J L, BARBATI S, FREJAVILLE C, et al. Synthesis and use as spin-trap of 5-methyl-5-phosphono-1-pyrroline N-oxide (DHPMPO). pH dependence of the EPR parameters of the spin adducts[J]. J Chem Soc Perkins Trans2, 2001, 59(9):1471-1475. [11] GALLEZ B, M DER K, SWARTZ H M. Noninvasive measurement of the pH inside the gut by using pH-sensitive nitroxides. An in vivo EPR study[J]. Magn Reson Med, 1996, 36(5):694-697. [12] MADER K, GALLEZ B, LIU K J, et al. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy[J]. Biomaterials, 1996, 17(4):457-461. [13] POTAPENKO D I, FOSTER M A, LURIE D J, et al. Real-time monitoring of drug-induced changes in the stomach acidity of living rats using improved pH-sensitive nitroxides and low-field EPR techniques[J]. J Magn Reson, 2006, 182(1):1-11. [14] GOODWIN J, YACHI K, NAGANE M, et al. In vivo tumour extracellular pH monitoring using electron paramagnetic resonance:the effect of X-ray irradiation[J]. NMR Biomed, 2014, 27(4):453-458. [15] ARDENKJAER-LARSEN J H, LAURSEN I, LEUNBACH I, et al. EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging[J]. J Magn Reson, 1998, 133(1):1-12. [16] REDDY T J, IWAMA T, HALPERN H J, et al. General synthesis of persistent trityl radicals for EPR imaging of biological systems[J]. J Org Chem, 2002, 67(14):4635-4639. [17] LIU Y, VILLAMENA F A, SUN J, et al. Synthesis and characterization of ester-derivatized tetrathiatriarylmethyl radicals as intracellular oxygen probes[J]. J Org Chem, 2008, 73(4):1490-1497. [18] LIU Y P, ZWEIER J L. Synthesis and EPR characterization of a novel functional biradical[J]. Chinese J Magn Reson, 2010, 27(1):95-102. 刘阳平, ZWEIER J L. 一种新型功能化双自由基的合成及EPR表征[J]. 波谱学杂志, 2010, 27(1):95-102. [19] BOBKO A A, DHIMITRUKA I, ZWEIER J L, et al. Trityl radicals as persistent dual function pH and oxygen probes for in vivo electron paramagnetic resonance spectroscopy and imaging:Concept and experiment[J]. J Am Chem Soc, 2007, 129(23):7240-7241. [20] LIU Y P, VILLAMENA F A, ZWEIER J L. Highly stable dendritic trityl radicals as oxygen and pH probe[J]. Chem Commun, 2008, (36):4336-4338. [21] DHIMITRUKA I, BOBKO A A, HADAD C M, et al. Synthesis and characterization of amino derivatives of persistent trityl radicals as dual function pH and oxygen paramagnetic probes[J]. J Am Chem Soc, 2008, 130(32):10780-10787. [22] DRIESSCHAERT B, MARCHAND V, LEVEQUE P, et al. A phosphonated triarylmethyl radical as a probe for measurement of pH by EPR[J]. Chem Commun, 2012, 48(34):4049-4051. [23] BOBKO A A, DHIMITRUKA I, KOMAROV D A, et al. Dual-function ph and oxygen phosphonated trityl probe[J]. Anal Chem, 2012, 84(14):6054-6060. [24] MARCHAND V, LEVEQUE P, DRIESSCHAERT B, et al. In vivo EPR extracellular pH-metry in tumors using a triphosphonated trityl radical[J]. Magn Reson Med, 2017, 77(6):2438-2443. [25] DHIMITRUKA I, BOBKO A A, EUBANK T D, et al. Phosphonated trityl probes for concurrent in vivo tissue oxygen and pH monitoring using electron paramagnetic resonance-based techniques[J]. J Am Chem Soc, 2013, 135(15):5904-5910. [26] CHEN Y, SUN P, LIU M L, et al. Effects of metal ions on human serum albumin studied by radiation damping water-ligand observed via gradient spectroscopy[J]. Chinese J Magn Reson, 2017, 34(3):266-274. 陈瑶, 孙鹏, 刘买利, 等. 离子对人血清白蛋白影响的1H NMR研究[J]. 波谱学杂志, 2017, 34(3):266-274. [27] SONG Y G, LIU Y P, LIU W B, et al. Characterization of the binding of the Finland trityl radical with bovine serum albumin[J]. RSC Adv, 2014, 4(88):47649-47656. [28] LIU W B, NIE J P, TAN X L, et al. Synthesis and characterization of PEGylated trityl radicals:Effect of PEGylation on physicochemical properties[J]. J Org Chem, 2017, 82(1):588-596. [29] ROCKENBAUER A, KORECZ L. Automatic computer simulations of ESR spectra[J]. Appl Magn Reson, 1996, 10(1):29-43. [30] DECROOS C, PRANGE T, MANSUY D, et al. Unprecedented ipso aromatic nucleophilic substitution upon oxidative decarboxylation of tris(p-carboxyltetrathiaaryl)methyl (TAM) radicals:a new access to diversely substituted TAM radicals[J]. Chem Commun, 2011, 47(16):4805-4807. [31] ROGOZHNIKOVA O Y, VASILIEV V G, TROITSKAYA T I, et al. Generation of trityl radicals by nucleophilic quenching of tris (2,3,5,6-tetrathiaaryl)methyl cations and practical and convenient large-scale synthesis of persistent tris(4-carboxy-2,3,5,6-tetrathiaaryl) methyl radical[J]. Eur J Org Chem, 2013, 2013(16):3347-3355. [32] TORMYSHEV V M, ROGOZHNIKOVA O Y, BOWMAN M K, et al. Preparation of diversely substituted triarylmethyl radicals by the quenching of tris(2,3,5,6-tetrathiaaryl)methyl cations with C-, N-, P-, and S-nucleophiles[J]. Eur J Org Chem, 2014, 2014(2):371-380. [33] XIA S J, VILLAMENA F A, HADAD C M, et al. Reactivity of molecular oxygen with ethoxycarbonyl derivatives of tetrathiatriarylm ethyl radicals[J]. J Org Chem, 2006, 71(19):7268-7279. [34] DHIMITRUKA I, VELAYUTHAM M, BOBKO A A, et al. Large-scale synthesis of a persistent trityl radical for use in biomedical EPR applications and imaging[J]. Bioorg Med Chem Lett, 2007, 17(24):6801-6805. [35] DHIMITRUKA I, GRIGORIEVA O, ZWEIER J L, et al. Synthesis, structure, and EPR characterization of deuterated derivatives of Finland trityl radical[J]. Bioorg Med Chem Lett, 2010, 20(13):3946-3949. [36] SONG Y G, LIU Y P, HEMANN C, et al. Esterified dendritic TAM radicals with very high stability and enhanced oxygen sensitivit y[J]. J Org Chem, 2013, 78(4):1371-1376. [37] RIZZI C, SAMOUILOV A, KUTALA V K, et al. Application of a trityl-based radical probe for measuring superoxide[J]. Free Radical Bio Med, 2003, 35(12):1608-1618. [38] LIU Y, SONG Y, DE PASCALI F, et al. Tetrathiatriarylmethyl radical with a single aromatic hydrogen as a highly sensitive and specific superoxide probe[J]. Free Radical Bio Med, 2012, 53(11):2081-2091. [39] TAN X, CHEN L, SONG Y, et al. Thiol-dependent reduction of the triester and triamide derivatives of finland trityl radical triggers O2-dependent superoxide production[J]. Chem Res Toxicol, 2017, 30(9):1664-1672. [40] BOBKO A A, EUBANK T D, DRIESSCHAERT B, et al. Interstitial inorganic phosphate as a tumor microenvironment marker for tumor progression[J]. Sci Rep, 2017, 7:41233-41244. |