[1] SLEEP D. Albumin and its application in drug delivery[J]. Expert Opin Drug Deliv, 2015, 12(5):793-812. [2] KENDALL F E. Studies on human serum proteins[J]. J Biol Chem, 1941, 138(1):97-109. [3] SUGIO S, KASHIMA A, MOCHIZUKI S, et al. Crystal structure of human serum albumin at 2.5Å resolution[J]. Protein Eng Des Sel, 1999, 12(6):439-446. [4] FREDRICKSON D S, JR R S G. The metabolism of albumin-bound C14-labeled unesterified fatty acids in normal human subjects[J]. J Clin Invest, 1958, 37(11):1504-1515. [5] LIAO S M, DU Q S, MENG J Z, et al. The multiple roles of histidine in protein interactions[J]. Chem Cent J, 2013, 7(1):44. [6] SCHNEIDER F. Histidine in enzyme active centers[J]. Angew Chem Int Ed Engl, 1978, 17(8):583-592. [7] BLINDAUER C A, HARVEY I, BUNYAN K E, et al. Structure, properties, and engineering of the major zinc binding site on human albumin[J]. J Biol Chem, 2009, 284(34):23116-23124. [8] KANEKO K, CHUANG V T, MINOMO A, et al. Histidine146 of human serum albumin plays a prominent role at the interface of subdomains IA and ⅡA in allosteric ligand binding[J]. IUBMB Life, 2011, 63(4):277-285. [9] BHATTACHARYA A A, GRüNE T, CURRY S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin[J]. J Mol Biol, 2000, 303(5):721-732. [10] DAI C Y, ZHANG Z T, LIU M L, et al. Application of NMR in the studies of structure and interactions of α-synuclein[J]. Chinese J Magn Reson, 2016, 33(1):153-167. 戴晨晔, 张则婷, 刘买利, 等. NMR在α-Synuclein的结构及相互作用研究中的应用[J]. 波谱学杂志, 2016, 33(1):153-167. [11] CHENG K, YAO C D, XU G H, et al. Interaction of GB1 with metal ions studied by NMR spectroscopy[J]. Chinese J Magn Reson, 2018, 35(1):1-7. 成凯, 姚陈叠, 徐国华, 等. GB1与金属离子相互作用的NMR研究[J]. 波谱学杂志, 2018, 35(1):1-7. [12] SIMARD J R, ZUNSZAIN P A, HAMILTON J A, et al. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis[J]. J Mol Biol, 2006, 361(2):336-351. [13] HAMILTON J A. NMR reveals molecular interactions and dynamics of fatty acid binding to albumin[J]. Biochim Biophys Acta, 2013, 1830(12):5418-5426. [14] DALVIT C, PEVARELLO P, TATÒ M, et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water[J]. J Biomol NMR, 2000, 18(1):65-68. [15] DALVIT C, FOGLIATTO G, STEWART A, et al. WaterLOGSY as a method for primary NMR screening:practical aspects and range of applicability[J]. J Biomol NMR, 2001, 21(4):349-359. [16] SUN P, JIANG X W, JIANG B, et al. Biomolecular ligands screening using radiation damping difference WaterLOGSY spectroscopy[J]. J Biomol NMR, 2013, 56(3):285-290. [17] CHEN Y, SUN P, LIU M L, et al. Effects of metal ions on human serum albumin studied by radiation damping water-ligand observed via gradient spectroscopy[J]. Chinese J Magn Reson, 2017, 34(3):266-274. 陈瑶, 孙鹏, 刘买利, 等. 离子对人血清白蛋白影响的1H NMR研究[J]. 波谱学杂志, 2017, 34(3):266-274. [18] 陈瑶. 人血清白蛋白与配体之间相互作用的核磁共振研究[D]. 武汉:中国科学院武汉物理与数学研究所, 2016. [19] FANALI G, DI MASI A, TREZZA V, et al. Human serum albumin:from bench to bedside[J]. Mol Aspects Med, 2012, 33(3):209-290. [20] WOSILAIT W D, SOLER-ARGILAGA C. A theoretical analysis of the multiple binding of palmitate by bovine serum albumin:The relationship to uptake of free fatty acids by tissues[J]. Life Sci, 1975, 17(1):159-166. [21] VAN DER VUSSE G J. Albumin as fatty acid transporter[J]. Drug Metab Pharmacokinet, 2009, 24(4):300-307. |