1 |
MA C W , YANG H Y , ZHONG K . Research progresses of high-field MRI 1H/31P dual-tuned radio frequency coil[J]. Chinese J Magn Reson, 2021, 38 (1): 118- 139.
|
|
马聪伟, 杨鸿毅, 钟凯. 高场磁共振成像1H/31P双调谐射频线圈研究进展[J]. 波谱学杂志, 2021, 38 (1): 118- 139.
|
2 |
HE G , WANG W M . A multi-channel radiofrequency transmitter for high-field MRI[J]. Chinese J Magn Reson, 2017, 34 (3): 338- 346.
|
|
何刚, 王为民. 一种用于高场MRI的多源射频发射机[J]. 波谱学杂志, 2017, 34 (3): 338- 346.
|
3 |
HASHI K , OHKI S , GOTO A , et al. Development of an NMR spectrometer operated beyond 1 GHz: NMR evaluation of the magnet and its application[J]. Teion Kogaku, 2016, 51 (7): 329- 334.
doi: 10.2221/jcsj.51.329
|
4 |
BANCI L, BARBIERI L, CALDERONE V, et al. Biomolecular NMR at 1.2 GHz[EB/OL]. [2019-10-16]. https://arxiv.org/ftp/arxiv/papers/1910/1910.07462.pdf.
|
5 |
IWASA Y , BASCUNAN J , HAHN S , et al. A High-Resolution 1.3-GHz/54-mm LTS/HTS NMR Magnet[J]. IEEE Transactions on Applied Superconductivity, 2015, 25 (3): 1- 5.
|
6 |
MAEDA H , SHIMOYAMA J I , YANAGISAWA Y , et al. The MIRAI program and the new super-high field NMR initiative and its relevance to the development of superconducting joints in Japan[J]. IEEE T Appl Supercon, 2019, 29 (5): 4602409.
|
7 |
BRITTLES G D , MOUSAVI T , GROVENOR C R M , et al. Persistent current joints between technological superconductors[J]. Supercond Sci Tech, 2015, 28 (9): 093001.
doi: 10.1088/0953-2048/28/9/093001
|
8 |
SHEN W , COFFEY M , MCGH EE W . Development of A 600 MHz wide bore (89 mm) NMR system using internal tin wires[J]. IEEE T Appl Supercon, 2001, 11 (1): 2429- 2432.
doi: 10.1109/77.920353
|
9 |
LIU J H , CHENG J S , WANG Q L . Evaluation of NbTi superconducting joints for 400 MHz NMR magnet[J]. IEEE T Appl Supercon, 2013, 23 (6): 34- 39.
doi: 10.1109/TASC.2013.2271242
|
10 |
WEN H M , LIN L Z , HAN S . Joint resistance measurement using current-comparator for superconducting wires in high magnetic field[J]. IEEE T Magn, 2002, 28 (1): 834- 836.
|
11 |
TOMINAKA T , KAKUGAWA S . Electrical properties of superconducting joint between composite conductors[J]. IEEE T Magn, 1991, 27 (2): 1846- 1849.
doi: 10.1109/20.133555
|
12 |
LEUPOLD M J , IWASA Y . Superconducting joint between multifilamentary wires 1. Joint-making and joint results[J]. Cryogenics, 1976, 16 (4): 215- 216.
doi: 10.1016/0011-2275(76)90262-9
|
13 |
NUDING J M. Method of making a superconductive joint: US, 3422529[P]. 1969-01-21.
|
14 |
PHILLIP S , PORTO J V , PARPIA J M . Two methods of fabricating reliable superconducting joints with multifilamentary Nb-Ti superconducting wire[J]. J Low Temp Phys, 1995, 101 (3, 4): 581- 585.
doi: 10.1007/BF00753357
|
15 |
CHENG J S , WANG Q L , ZHOU F , et al. Development of electromagnetic forming NbTi superconducting joint[J]. IEEE T Appl Supercon, 2016, 26 (7): 6001705.
|
16 |
LIU S Y , JIANG X H , CHAI G L , et al. Superconducting joint and persistent current switch for a 7-T animal MRI magnet[J]. IEEE T Appl Supercon, 2013, 23 (3): 4400504.
doi: 10.1109/TASC.2012.2236674
|
17 |
KODAMA M , OKAMOTO K , KOGA Y , et al. Analysis for formation of current path in the superconducting joint between Nb-Ti wires with the solder matrix replacement method[J]. Supercond Sci Tech, 2015, 28 (4): 239- 242.
|
18 |
SANTRA S , DAVIES T , MATTHEWS G , et al. The effect of the size of NbTi filaments on interfacial reactions and the properties of InSn-based superconducting solder joints[J]. Mater Design, 2019, 176 (C): 107836.
|
19 |
LI J D , LIN L Z , HAN S , et al. The properties of cold-welded joints between multifilamentary Nb3Sn wires[J]. Cryogenics, 1994, 34 (S1): 497- 500.
|
20 |
MCINTYRE P , WU Y W Y , LIANG G L G , et al. Study of Nb3Sn superconducting joints for very high magnetic field NMR spectrometers[J]. IEEE T Appl Supercon, 1995, 5 (2): 238- 241.
doi: 10.1109/77.402533
|
21 |
SWENSON C A , MARKIEWICZ W D . Persistent joint development for high field NMR[J]. IEEE T Appl Supercon, 1999, 9 (2): 185- 188.
doi: 10.1109/77.783267
|
22 |
PARK Y J , LEE M W , ANN H , et al. A superconducting joint for GdBa2Cu3O7-d-coated conductors[J]. NPG Asia Materials, 2014, 6 (5): e98.
doi: 10.1038/am.2014.18
|
23 |
PARK Y J , LEE M W , OH Y K , et al. Laser drilling: enhancing superconducting joint of GdBa2Cu3O7-d coated conductors[J]. Supercond Sci Technol, 2014, 27 (8): 085008.
doi: 10.1088/0953-2048/27/8/085008
|
24 |
JIN X Z , YANAGISAWA Y , MAEDA H , et al. Development of a superconducting joint between a GdBa2Cu3O7-d-coated conductor and YBa2Cu3O7-d bulk: towards a superconducting joint between RE (Rare Earth) Ba2Cu3O7-d-coated conductors[J]. Supercond Sci Technol, 2015, 28 (7): 075010.
doi: 10.1088/0953-2048/28/7/075010
|
25 |
JIN X Z , YANAGISAWA Y , MAEDA H . Measurement of persistent current in a Gd123 coil with a superconducting joint fabricated by the CJMB method[J]. IEEE T Appl Supercon, 2018, 28 (3): 4602604.
|
26 |
FURUKAWA ELECTRIC CO, LTD & INSTITUTE FOR MATERIALS RESEARCH, TOHOKU UNIVERSITY. Development of persistent current technology using rare earth superconducting wire materials-progress toward realization of MRI magnets using HTS wire materials[EB/OL]. [2016-04-27]. https://www.furukawa.co.jp/en/release/2016/kenkai_160427.html.
|
27 |
OHKI K , NAGAISHI T , KATO T , et al. Fabrication, microstructure and persistent current measurement of an intermediate grown superconducting (iGS) joint between REBCO-coated conductors[J]. Supercon Sci Technol, 2017, 30 (11): 115017.
doi: 10.1088/1361-6668/aa8e65
|
28 |
BRITTLES G D , NOONAN P , KEYS S A , et al. Rapid characterisation of persistent current joints by SQUID magnetometry[J]. Supercon Sci Technol, 2014, 27 (12): 122002.
doi: 10.1088/0953-2048/27/12/122002
|
29 |
IWASA Y . Superconducting joint between multifilamentary wires 2. Joint evaluation technique[J]. Cryogenics, 1976, 16 (4): 217- 219.
doi: 10.1016/0011-2275(76)90263-0
|
30 |
KIYOSHI T , INOUE K , KOSUGE M , et al. Current decay evaluation of closed HTS coil circuits[J]. IEEE T Appl Supercon, 1997, 7 (2): 877- 880.
doi: 10.1109/77.614643
|
31 |
ZHUANG C , GU C , CHEN D X , et al. Persistent current of Bi2223/Ag closed coil in 77 K[J]. IEEE T Appl Supercon, 2007, 17 (2): 3125- 3128.
doi: 10.1109/TASC.2007.898954
|