[1] SIEGEL R L, MILLER K D, DVM A J. Cancer statistics, 2018[J]. Ca:A Cancer Journal for Clinicians, 2018, 68(1):11. [2] HAN S J, ZHANG S W, CHEN W Q, et al. Analysis of the status and trends of prostate cancer incidence in China[J]. Chinese Clinical Oncology, 2013, 18(4):330-334. 韩苏军, 张思维, 陈万青, 等. 中国前列腺癌发病现状和流行趋势分析[J]. 临床肿瘤学杂志, 2013, 18(4):330-334. [3] YANG J Y, YANG M Z, WEI W. Epidemiological study on the occurrence and development of prostate cancer[J]. J Clin Urology, 2017, 9:74-78. 杨进益, 杨明州, 魏伟. 前列腺癌发生发展的流行病学研究进展[J]. 临床泌尿外科杂志, 2017, 9:74-78. [4] MADDAMS J, UTLEY M, MØLLER H. Projections of cancer prevalence in the United Kingdom, 2010-2040[J]. Brit J Cancer, 2012, 107(7):1195-1202. [5] PENG Y, JIANG Y, YANG C, et al. Quantitative analysis of multiparametric prostate MR images:differentiation between prostate cancer and normal tissue and correlation with Gleason score——a computer-aided diagnosis development study[J]. Radiology, 2013, 267(3):787-796. [6] ROOIJ M D, HAMOEN E H J, FÜTTERER J J, et al. Accuracy of multiparametric MRI for prostate cancer detection:A meta-analysis[J]. AJR Am J Roentgenol, 2014, 202(2):343-351. [7] FEHR D, VEERARAGHAVAN H, WIBMER A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images[J]. Proc Natl Acad Sci U S A, 2015, 112(46):6265-73. [8] PENG Y, JIANG Y, YANG C, et al. Quantitative analysis of multiparametric prostate mr images:differentiation between prostate cancer and normal tissue and correlation with gleason score—a computer-aided diagnosis development study[J]. Radiology, 2013, 267(3):787-796. [9] HASEGAWA A, LO S C B, FREEDMAN M T, et al. Convolution neural-network-based detection of lung structures[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1994:654-662. [10] LO S B, LOU S A, LIN J S, et al. Artificial convolution neural network techniques and applications for lung nodule detection[J]. IEEE Trans Med Imaging, 1995, 14(4):711-718. [11] SAHINER B, CHAN H P, PETRICK N, et al. Classification of mass and normal breast tissue:a convolution neural network classifier with spatial domain and texture images[J]. IEEE Trans Med Imaging, 1996, 15(5):598-610. [12] YANG X, LIU C Y, WANG Z W, et al. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI[J]. Med Image Anal, 2017, 42:212-227. [13] WANG Z W, LIU C Y, CHENG D P, et al. Automated detection of clinically significant prostate cancer in mp-MRI images based on an end-to-end deep neural network[J]. IEEE Trans Med Imaging, 2018, 37(5):1127-1139. [14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014. arXiv:1409.1556. [15] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems. 2015. [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778. [17] LIN M, CHEN Q, YAN S C. Network in network[J]. Computer Science, 2013:196-204. [18] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on International Conference on Machine Learning. JMLR.org, 2015. [19] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9. [20] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. [21] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Thirty-First AAAI Conference on Artificial Intelligence. 2017:711-718. [22] GEERT L, OSCAR D, JELLE B, et al. Prostatex challenge data. The cancer imaging archive[OL]. https://doi.org/10.7937/K9TCIA.2017.MURS5CL. [23] SCHAEFER S, MCPHAIL T, WARREN J. Image deformation using moving least squares[C]//ACM Siggraph. 2006:711-718. |