Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (2): 143-153.doi: 10.11938/cjmr20243130cstr: 32225.14.cjmr20243130
• Articles • Previous Articles Next Articles
WEI Zhihong1, KONG Xudong1, KONG Yan1, YAN Shiju2, DING Yang1, WEI Xianding1, KONG Dong1, YANG Bo1,*()
Received:
2024-09-03
Published:
2025-06-05
Online:
2024-11-18
Contact:
*Tel: 13506177792, E-mail: CLC Number:
WEI Zhihong, KONG Xudong, KONG Yan, YAN Shiju, DING Yang, WEI Xianding, KONG Dong, YANG Bo. Application of Generative Adversarial Networks Based on Global and Local Feature Information in Hippocampus Segmentation[J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 143-153.
[1] | 张鹏. 人类海马体功能剖分及连接模式分析[D]. 长沙: 国防科学技术大学, 2019. |
[2] |
INSAUSTI R, MUOZLÓPEZ M, INSAUSTI A M. The CA2 hippocampal subfield in humans: A review[J]. Hippocampus, 2023, 33(6): 712-729.
doi: 10.1002/hipo.23547 pmid: 37204159 |
[3] |
AKKUS Z, GALIMZIANOVA A, HOOGI A, et al. Deep learning for brain MRI segmentation: state of the art and future directions[J]. J Digit Imaging, 2017, 30(4): 449-459.
doi: 10.1007/s10278-017-9983-4 pmid: 28577131 |
[4] | LI W. Automatic segmentation of liver tumor in CT images with deep convolutional neural networks[J]. J Comput Commun, 2015, 3(11): 146-151. |
[5] | MONDAL A K, DOLZ J, DESROSIERS C. Few-shot 3d multi-modal medical image segmentation using generative adversarial learning[J]. arXiv preprint arXiv: 1810.12241, 2018. |
[6] |
HALLER J W, CHRISTENSEN G E, JOSHI S C, et al. Hippocampal MR imaging morphometry by means of general pattern matching[J]. Radiology, 1996, 199(3): 787-791.
pmid: 8638006 |
[7] |
KWAK K, YOON U, LEE D K, et al. Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening[J]. Magn Reson Imaging, 2013, 31(7): 1190-1196.
doi: 10.1016/j.mri.2013.04.008 pmid: 23684964 |
[8] |
HECKEMANN R A, HAJNAL J V, ALJABAR P, et al. Automatic anatomical brain MRI segmentation combining label propagation and decision fusion[J]. NeuroImage, 2006, 33(1): 115-126.
doi: 10.1016/j.neuroimage.2006.05.061 pmid: 16860573 |
[9] | WU G, SHEN D. Hierarchical Label Fusion with Multiscale Feature Representation and Label-Specific Patch Partition[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer, Cham, 2014. |
[10] |
HU S, PIERRICK COUPÉ, PRUESSNER J C, et al. Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging[J]. NeuroImage, 2011, 58(2): 549-559.
doi: 10.1016/j.neuroimage.2011.06.054 pmid: 21741485 |
[11] | ZARPALAS D, GKONTRA P, DARAS P, et al. Hippocampus segmentation through gradient based reliability maps for local blending of ACM energy terms[C]// Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on.IEEE, 2013. |
[12] |
HAO Y F, WANG T Y, ZHANG X Q, et al. Local label learning (LLL) for subcortical structure segmentation: Application to hippocampus segmentation[J]. Hum Brain Mapp, 2014, 35: 2674-2697.
doi: 10.1002/hbm.22359 pmid: 24151008 |
[13] |
KHAN A R, CHERBUIN N, WEN W, et al. Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): Validation on hippocampus segmentation[J]. NeuroImage, 2011, 56(1): 126-139.
doi: 10.1016/j.neuroimage.2011.01.078 pmid: 21296166 |
[14] |
DE ALEJO R P, RUIZ-CABELLO J, CORTIJO M, et al. Computer-assisted enhanced volumetric segmentation magnetic resonance imaging data using a mixture of artificial neural networks[J]. Magn Reson Imaging, 2003, 21(8): 901-912.
pmid: 14599541 |
[15] | CAO L, LI L, ZHENG J, et al. Multi-task neural networks for joint hippocampus segmentation and clinical score regression[J]. Multimedia Tools Appl, 2018, 77(1): 1-18. |
[16] |
ATALOGLOU D, DIMOU A, ZARPALAS D, et al. Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning[J]. Neuroinformatics, 2019, 17(4): 563-582.
doi: 10.1007/s12021-019-09417-y pmid: 30877605 |
[17] |
HAZARIKA R A, MAJI A K, SYIEM R, et al. Hippocampus segmentation using u-net convolutional network from brain magnetic resonance imaging (MRI)[J]. J Digit Imaging, 2022, 35(4): 893-909.
doi: 10.1007/s10278-022-00613-y pmid: 35304675 |
[18] | DENG H, ZHANG Y, LI R, et al. Combining residual attention mechanisms and generative adversarial networks for hippocampus segmentation[J]. Tsinghua Sci Technol, 2022, 27(1): 68-78. |
[19] | OU Y X, GAO M, ZHAO D, et al. SA-TF-UNet: MRI hippocampus segmentation based on spatial attention mechanism and Transformer[J]. Journal of Image and Graphics, 2023, 28: 3191-3202. |
欧宇轩, 高敏, 赵地, 等. SA-TF-UNet: 基于空间注意力机制和Transformer的MRI海马体分割[J]. 中国图象图形学报, 2023, 28: 3191-3202. | |
[20] | WEI Z H, YAN S J, HAN B S, et al. Multi-output 3D convolutional neural network for diagnosis of Alzheimer's disease[J]. Chinese J Magn Reson, 2021, 38(1): 92-100. |
魏志宏, 闫士举, 韩宝三, 等. 基于多输出的3D卷积神经网络诊断阿尔兹海默病[J]. 波谱学杂志, 2021, 38(1): 92-100.
doi: 10.11938/cjmr20202808 |
|
[21] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[22] | ZHONG Z S, KIM Y S, PLICHTA K, et al. Simultaneous co-segmentation of tumors in PET-CT images using deep fully convolutional networks[J]. Med Phys, 2019, 46: 619-633. |
[23] | ZHAO X, ZHANG X, LI X J, et al. Multimodal glioma segmentation with fusion of multiple self-attention and deformable convolutions[J]. Chinese J Magn Reson, 2023, 40(3): 280-292. |
赵欣, 张鑫, 李鑫杰, 等. 融合多重自注意力和可变形卷积的多模态脑胶质瘤分割[J]. 波谱学杂志, 2023, 40(3): 280-292.
doi: 10.11938/cjmr20233059 |
|
[24] | LOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. ArXiv Preprint Arxiv: 1502.03167, 2015. |
[25] | LIAO X, QIAN Y, CHEN Y, et al. MMTLNet: Multi-modality transfer learning network with adversarial training for 3D whole heart segmentation[J]. Comput Med Imaging Graphics, 2020(85): 101785. |
[26] | MADANI A, MORADI M, SYEDA-MAHMOOD T F. Medical image classification based on a generative adversarial network trained discriminator: US, 10937540B2[P]. 2021-03-02. |
[27] | ARUN PANDIAN J, KANCHANADEVI K, KUMAR D, et al. Deep convolutional generative adversarial network for metastatic tissue diagnosis in lymph node section[M]// System Design for Epidemics Using Machine Learning and Deep Learning. Springer, Cham, 2023: 153-166. |
[28] | REN H J, MA Y, XIAO L. Knee joint model construction and local specific absorptivity estimation based on generative adversarial network[J]. Chinese J Magn Reson, 2023, 40(4): 410-422. |
任宏晋, 马岩, 肖亮. 基于生成对抗网络的膝关节模型构建与局部比吸收率估计[J]. 波谱学杂志, 2023, 40(4): 410-422.
doi: 10.11938/cjmr20233053 |
|
[29] |
CHAKRABORTY S, CHATTERJEE S, DEY N, et al. Modified cuckoo search algorithm in microscopic image segmentation of hippocampus[J]. Microsc Res Techniq, 2017, 80(10): 1051-1072.
doi: 10.1002/jemt.22900 pmid: 28557041 |
[30] | SMALL G W, HARRISON T M, BURGGREN A C, et al. Altered memory-related functional connectivity of the anterior and posterior hippocampus in older adults at increased genetic risk for alzheimer's disease[J]. Hum Brain Mapp, 2013, 37(1): 366-380. |
[31] |
PHAM D L, XU C, PRINCE J L. Current methods in medical image segmentation[J]. Annu Rev Biomed Eng, 2000, 2: 315-337.
pmid: 11701515 |
[32] | SHIN H C, TENENHOLTZ N A, ROGERS J K, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks[C]// International workshop on simulation and synthesis in medical imaging. Springer, Cham, 2018: 1-11. |
[1] | MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220. |
[2] | Dai Junlong, He Cong, Wu Jie, Bian Yun. Pancreatic Cystic Neoplasms Segmentation Network Combining Dual Decoding and Global Attention Upsampling Modules [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 151-161. |
[3] | CHANG Bo, SUN Haoyun, GAO Qingyu, WANG Lijia. Research Progress on Cardiac Segmentation in Different Modal Medical Images by Traditional Methods and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 224-244. |
[4] | REN Hongjin, MA Yan, XIAO Liang. Knee Joint Model Construction and Local Specific Absorption Rate Estimation Based on Generative Adversarial Networks [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 410-422. |
[5] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
[6] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[7] | ZHAO Xin, ZHANG Xin, LI Xinjie, WANG Hongkai. Multimodal Glioma Segmentation with Fusion of Multiple Self-attention and Deformable Convolutions [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 280-292. |
[8] | Hui XU, Yi-ting WU, Xu-xia WANG, Yan KANG, Hao LEI, Li-feng GAO. Hippocampal Metabolite Alterations in Long-term Insulin-treated Type 1 Diabetes Mellitus Rats Revealed by 1H MRS [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 393-400. |
[9] | Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE. Applications of Generative Adversarial Networks in Medical Image Translation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 366-380. |
[10] | Ying-shan WANG, Ao-qi DENG, Jin-ling MAO, Zhong-qi ZHU, Jie SHI, Guang YANG, Wei-wei MA, Qing LU, Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315. |
[11] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
[12] | Yue QIU, Sheng-dong NIE, Long WEI. Segmentation of Breast Tumors Based on Fully Convolutional Network and Dynamic Contrast Enhanced Magnetic Resonance Image [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 196-207. |
[13] | Lu HUO,Xiao-xin HU,Qin XIAO,Ya-jia GU,Xu CHU,Luan JIANG. Automatic Segmentation of Breast and Fibroglandular Tissues in DCE-MR Images Based on nnU-Net [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 367-380. |
[14] | Ying LIU,Yi-yun GUO,Jing-cong CHEN,Hao-wei ZHANG. Automatic Precise Segmentation of Cerebellopontine Angle Tumor Based on Faster-RCNN and Level-Set Method [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 381-391. |
[15] | Shi-ju YAN,Yong-sen HAN,Guang-yu TANG. An Improved Level Set Algorithm for Prostate Region Segmentation [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 356-366. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||