[1] OGOSHI T, KANAI S, FUJINAMI S, et al. Para-bridged symmetrical pillar [5] arenes:their synthesis and host-guest property[J]. J Am Chem Soc, 2008, 130(15):5022-5023. [2] CHI X D, JI X F, HUANG F H, et al. A dual-responsive supra-amphiphilic polypseudorotaxane constructed from a water-soluble pillar [7] arene and an azobenzene-containing random copolymer[J]. J Am Chem Soc, 2015, 137(4):1440-1443. [3] YU G, ZHAO R, WU D, et al. Pillar [5] arene-based amphiphilic supramolecular brush copolymer:fabrication, controllable self-assembly and application in self-imaging targeted drug delivery[J]. Polym Chem, 2016, 7(40):6178-6188. [4] WEI T B, CHENG X B, Li H, et al. Novel functionalized pillar [5] arene:synthesis, assembly and application in sequential fluorescent sensing for Fe3+ and F- in aqueous media[J]. Rsc Adv, 2016, 6(25):20987-20993. [5] CHEN J F, CHENG X B, LI H, et al. A copillar [5] arene-based fluorescence "on-off-on" sensor is applied in sequential recognition of an iron cation and a fluoride anion[J]. New J Chem, 2017, 41(5):2148-2153. [6] NOUJEIM N, ZHU K, VUKOTIC V N, et al. [2] Pseudorotaxanes from t-shaped benzimidazolium axles and crown-8wheels[J]. Org Lett, 2012, 14(10):2484-2487. [7] CHEN L, TIAN Y K, DING Y, et al. Multistimuli responsive supramolecular cross-linked networks on the basis of thebenzo-21-Crown-7/secondary ammonium salt recognition motif[J]. Macromolecules, 2012, 45(20):8412-8419. [8] LI S J, HUANG J Y, COOK T R, et al. Formation of [3] catenanes from 10 precursors via multicomponent coordination-driven self-assembly of metallarectangles[J]. J Am Chem Soc, 2013, 135(6):2084-2087. [9] HAN Y, MENG Z, MA Y X, et al. Iptycene-derived crown ether hosts for molecular recognition and self-assembly[J]. Accounts Chem Res, 2014, 47(7):2026-2040. [10] YANG Y H, DU Y, YING F X, et al. Inclusion behavior of naringenin/-cyclodextrin supramolecular complex[J]. Chinese J Magn Reson, 2019, 36(3):319-330. 杨云汉, 杜瑶, 应飞祥, 等. 柚皮素/β-环糊精超分子体系的包合行为[J]. 波谱学杂志, 2019, 36(3):319-330. [11] DU Y, ZHOU S Y, YANG Y H, et al. Study on molecular recognition of pinocembrin with methylated-β-cyclodextrin[J]. Chinese J Anal Chem, 2019, 47(3):371-379. 杜瑶, 周树娅, 杨云汉, 等. 松属素与甲基化-β-环糊精的分子识别研究[J]. 分析化学, 2019, 47(03):371-379. [12] DENG Y H, SU L N, PANG Y H, et al. Preparation, characterization and water solubility of Inclusion complexes of daidzein with amino-modified β-cyclodextrins[J]. Chinese J Anal Chem, 2017, 45(5):648-653. 邓颖慧, 苏丽娜, 庞艳华, 等. 大豆苷元与氨基修饰β-环糊精包合物的制备、表征及水溶性[J]. 分析化学, 2017, 45(5):648-653. [13] LIU X B, LIN J L, WANG H, et al. Water-solubilization of acyclic cucurbiturils for arenes and aromatic aldehydes and the promotion for the generation of two hydrazine-based macrocycles[J]. Chinese J Org Chem, 2020, 40:663-668. 刘旭波, 林佳乐, 王辉, 等. 开环葫芦脲在水中对芳烃和芳醛的增溶和对腙大环形成的促进作用[J]. 有机化学, 2020, 40:663-668. [14] MA J, ZHANG X Z, LIU S M. Characteristics of cucurbit [8] uril host-guest Inclusion complexes and determination of thebinding constants of metal ions with cucurbit [8] uril[J]. J Anal Sci, 2019, 35(1):41-46. 马军, 张雄志, 刘思敏. 葫芦 [8] 脲主客体包合物特性及对金属离子键合常数测定[J]. 分析科学学报, 2019, 35(1):41-46. [15] GUO D S, LIU Y. Calixarene-based supramolecular polymerization in solution[J]. Chem Soc Rev, 2012, 41(18):5907. [16] MA X Q, WANG Y, WEI T B, et al. A novel AIE chemosensor based on quinoline functionalized pillar [5] arene for highly selective and sensitive sequential detection of toxic Hg2+ and CN-[J]. Dyes Pigments. 2019, 164:279-286. [17] YU G C, MA Y J, HAN C Y, et al. A sugar-functionalized amphiphilic pillar [5] arene:synthesis, self-assembly in water, and application in bacterial cell agglutination[J]. J Am Chem Soc, 2013, 135(28):10310-10313. [18] SI W, CHEN L, HU X B, et al. Selective artificial transmembrane channels for protons by formation of water wires[J]. Angew Chem Int Edit, 2011, 123(52):12772-12776. [19] HU X B, CHEN Z, TANG G, et al. Single-molecular artificial transmembrane water channels[J]. J Am Chem Soc, 2012, 134(20):8384-8387. [20] ZHANG F, MA J K, SUN Y, et al. Construction of a switchable nanochannel for protein transport via a pillar [5] arene-based host-guest system[J]. Anal Chem, 2018, 90(13):8270-8275. [21] DUAN Q P, CAO Y, LI Y, et al. pH-responsive supramolecular vesicles based on water-soluble pillar [6] arene and ferrocene derivative for drug delivery[J]. J Am Chem Soc, 2013, 135(28):10542. [22] CAO Y, HU X Y, LI Y, et al. Multistimuli-responsive supramolecular vesicles based on water-soluble pillar [6] arene and saint complexation for controllable drug release[J]. J Am Chem Soc, 2014, 136(30):10762-10769. [23] YU C, YAN L, HU X Y, et al. Supramolecular nanoparticles constructed by dox-based prodrug with water-soluble pillar [6] arene for self-catalyzed rapid drug release[J]. Chem Mater, 2016, 27(3):1110-1119. [24] XU Z Y, ZHANG Y C, LIN J L, et al. Supramolecular self-assembly applied for the design of drug delivery[J]. Systems Prog Chem, 2019, 11:1-10. 徐子悦, 张运昌, 林佳乐, 等. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 11:1-10. [25] YU G C, YU W, SHAO L, et al. Fabrication of a targeted drug delivery system from a pillar [5] arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy[J]. Adv Funct Mater, 2016, 26(48):1-9. [26] YANG Y H, YANG J L, LU J J, et al. Preparation of cationic water-pillar [5] arene modified zeolite and its adsorption to bromocresol purple[J]. Chinese J Anal Chem, 2019, 47(12):1922-1930. 杨云汉, 杨俊丽, 鲁佳佳, 等. 阳离子化柱 [5] 芳烃改性沸石对溴甲酚紫的吸附研究[J]. 分析化学, 2019, 47(12):1922-1930. [27] LI P, ZHANG D W, JIA Q. Research advances in supramolecular macrocyclic compounds for dye adsorption[J]. Chinese J Chro, 2020, 38(3):297-306.李萍, 张大伟, 贾琼. 超分子大环化合物用于染料吸附的研究进展[J]. 色谱, 2020, 38(3):297-306. [28] WAGNER B D, STOJANOVIC N, DAY A I, et al. Hostproperties of cucurbit [7] uril:fluorescence enhancement of anilinon aphthalene ulfonates[J]. J Phys Chem B, 2003, 107:10741-10746. [29] MOHANTY J, BHASIKUTTAN A C, NAU W M, et al. Host-guest complexation of neutral red with macrocyclic host molecules:contrasting pKa shifts and binding affinities for cucurbit [7] uril and b-cyclodextrin[J]. J Phys Chem, 2006, 110:5132-5238. [30] ZHOU Y Y, YU H P, ZHANG L, et al. Host properties of cucurbit [7] uril:fluorescence enhancement of acridine orange[J]. J Incl Phenom Macro, 2008, 61(3,4):259-260. [31] YANG M, LIU Q, TANG Q, et al. Water-soluble supramolecular fluorescent probe for sensing carbendazim and its application in living cell imaging[J]. Chem Res Chinese U, 2018, 39(12):2665-2672. 杨梅, 刘青, 唐青, 等. 水溶性超分子荧光探针对多菌灵的识别及细胞成像[J]. 高等学校化学学报, 2018, 39(12):2665-2672. [32] LIU Q, YANG H R, WANG A J. Sensitive fluorescence method for the determination of levofloxacin in pharmaceuticals using bromate-bromide, methylene blue and β-cyclodextrin as reagents[J]. Anal Lab, 2012, 31(5):6-9. 刘奇, 杨红瑞, 王爱军. β-环糊精增敏亚甲基蓝荧光法测定左氧氟沙星[J]. 分析试验室, 2012, 31(5):6-9. [33] LIN L B, GUO H Y, YANG F F, et al. Novel biscalix [4] arene with large conjugated aromatic bridges:synthesis and complexation properties for dyes[J]. Chinese J Org Chem, 2016, 36(8):1863-1868. 林梁斌, 郭红玉, 杨发福, 等. 大共轭芳香基桥联双杯 [4] 芳烃的合成与染料配合性能[J]. 有机化学, 2016, 36(8):1863-1868. [34] YAN Z X, GUO H Y, YANG F F, et al. Syntheses and dyes complexation properties of multiple-azo calix [4] arene derivatives containing thiourea groups[J]. Chinese J Org Chem, 2016, 36(5):1088-1093. 严祯曦, 郭红玉, 杨发福, 等. 含硫脲基的多重氮杂杯 [4] 芳烃衍生物的合成与有机染料配合性能[J]. 有机化学, 2016, 36(5):1088-1093. [35] QIAN X C, ZHOU X J, YANG L, et al. One-step and green strategy for exfoliation and stabilization of graphene by phosphate pillar [6] arene and its application for fluorescence sensing of paraquat[J]. Microchem J, 2019, 150:104203. [36] HUA B, SHAO L, ZHANG Z H, et al. Pillar [6] arene/acridine orange host-guest complexes as colorimetric and fluorescence sensors for choline compounds and further application in monitoring enzymatic reactions[J]. Sensor Actuat B-Chem, 2018, 255:1430-1435. [37] HU X Y, LIU X, ZHANG W, et al. Controllable construction of biocompatible supramolecular micelles and vesicles by water-soluble phosphate pillar[5,6] arenes for selective anti-cancer drug delivery[J]. Chem Mater, 2016, 28:3778. [38] MORRIS G M, HUEY R, LINDSTROM W, et al. Autodock4 and autodocktools4:automated docking with selective receptor flexibility[J]. Comput Chem, 2009, 30:2785. [39] VENKATESAN M, SATHIYANARAYANAN K I. Highly selective chemosensor for the detection of Ru3+ ion by fluorescentturn-on response and its bioimaging recognition in living cellsSens[J]. Sensor Actuat B-Chem, 2018, 18:267-373. [40] XIAO X D, SHI L, GUO L H, et al. Determination of dopamine hydrochloride by host-guest interaction based on water-soluble pillar [5] arene[J]. Spectrochim Acta A, 2017, 173:6. [41] ZHOU Z G, YUAN Y Y, LIU H B, et al. An NMR study on prucalopride[J]. Chinese J Magn Reson, 2018, 35(1):119-127. 周中高, 元洋洋, 刘红波, 等. 普卡必利的NMR研究[J]. 波谱学杂志, 2018, 35(1):119-127. [42] FAN H Y. Spectral analyses of a novel ibuprofen-phillygenin ester[J]. Chinese J Magn Reson, 2018, 35(1):98-108. 樊宏宇. 新型连翘脂素-布洛芬酯合物的波谱学数据解析[J]. 波谱学杂志, 2018, 35(1):98-108. |