[1] YANG B L. Future of ultra high field MRI in basic research and clinical applications[J]. Chinese J Magn Reson, 2015, 32(4):707-714. 杨保联. 超高场磁共振人体成像应用研究和医学前景[J]. 波谱学杂志, 2015, 32(4):707-714.[2] ZHANG H Y, LI C L, YING X F, et al. A Gadolinium based <i>T</i><sub>1</sub> MRI probe for detection of lung cancer stem cells[J]. Chinese J Magn Reson, 2016, 33(4):623-674. 张宏岩, 李春林, 英晓芳, 等. 靶向肺癌干细胞的多肽Gd基<i>T</i><sub>1</sub>型MRI探针的研究[J]. 波谱学杂志, 2016, 33(4):623-674.[3] THORARINSDOTTIR A E, GAUDETTE A I, HARRIS T D. Spin-crossover and high-spin iron(Ⅱ) complexes as chemical shift <sup>19</sup>F magnetic resonance thermometers[J]. Chem Sci, 2017, 8(3):2448-2456.[4] FERNANDO W S, MARTINS A F, ZHAO P, et al. Breaking the barrier to slow water exchange rates for optimal magnetic resonance detection of paraCEST agents[J]. Inorg Chem, 2016, 55(6):3007-3014.[5] DECKERS R, SPRINKHUIZEN S M, CRIELAARD B J, et al. Absolute MR thermometry using nanocarriers[J]. Contrast Media Mol, 2014, 9(4):283-290.[6] QUESSON B, LAURENT C, MACLAIR G, et al. Real-time volumetric MRI thermometry of focused ultrasound ablation <i>in vivo</i>:A feasibility study in pig liver and kidney[J]. NMR Biomed, 2011, 24(2):145-153.[7] YU K C, LV Z Y, YAO Y, et al. Recent progress in development of bio-active MRI contrast agents[J]. Chinese J Magn Reson, 2010, 27(3):355-368. 俞开潮, 吕志勇, 姚遥, 等. 生物激活磁共振成像造影剂的研究进展[J]. 波谱学杂志, 2010, 27(3):355-368.[8] YU K C, WANG G P, DING S W, et al. Recent Progeresses in the development of contrate agents used in megnetic resonance imaging[J]. Chinese J Magn Reson, 2004, 21(4):506-525. 俞开潮, 王国平, 丁尚武, 等. 用于磁共振成像对比增强的造影剂研发进展[J]. 波谱学杂志, 2004, 21(4):506-525.[9] GAO T X, LV Z, DING H Y, et al. Research progress of magnetic resonance imaging thermometry[J]. Chinese Journal of Medical Imaging, 2008, 7:547-553. 高天新, 吕宙, 丁海艳, 等. 磁共振温度成像技术研究进展[J]. 中国医学影像学杂志, 2014, 7:547-533.[10] RIEKE V, PAULY K B. MR thermometry[J]. J Magn Reson Imaging, 2008, 27(2):376-390.[11] SETTECASE F, SUSSMAN M S, ROBERTS T P L. A new temperature-sensitive contrast mechanism for MRI:Curie temperature transition-based imaging[J]. Contrast Media Mol, 2007, 2(1):50-54.[12] QUESSON B, DE ZWART J A, MOONEN C T W. Magnetic resonance temperature imaging for guidance of thermotherapy[J]. J Magn Reson Imaging, 2000, 12(4):525-533.[13] BORMAN P T S, BOS C, DE BOORDER T, et al. Towards real-time thermometry using simultaneous multislice MRI[J]. Phys Med Biol, 2016, 61(17):461-477.[14] HANKIEWICZ J H, CELINSKI Z, STUPIC K F, et al. Ferromagnetic particles as magnetic resonance imaging temperature sensors[J]. Nat Commun, 2016, 7:1-8.[15] HANNECART A, STANICKI D, VANDER ELST L, et al. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI[J]. Nanoscale, 2015, 7(8):3754-3767.[16] KIM H R, YOU D G, PARK S J, et al. MRI monitoring of tumor-selective anticancer drug delivery with stable thermosensitive liposomes triggered by high-intensity focused ultrasound[J]. Mol Pharm, 2016, 13(5):1528-1539.[17] DICHEVA B M, KONING G A. Targeted thermosensitive liposomes:an attractive novel approach for increased drug delivery to solid tumors[J]. Expert Opin Drug Del, 2014, 11(1):83-100.[18] HOSSANN M, WANG T, SYUNYAEVA Z, et al. Non-ionic Gd-based MRI contrast agents are optimal for encapsulation into phosphatidyldiglycerol-based thermosensitive liposomes[J]. J Control Release, 2013, 166(1):22-29.[19] TASHJIAN J A, DEWHIRST M W, NEEDHAM D, et al. Rationale for and measurement of liposomal drug delivery with hyperthermia using non-invasive imaging techniques[C]//Symposium of the European-Society-for-Hyperthermic-Oncology, Prague, CZECH REPUBLIC. European Soc Hypertherm Oncol, 2008, 24(1):79-90.[20] FOSSHEIM S L, IL'YASOV K A, HENNIG J, et al. Thermosensitive paramagnetic liposomes for temperature control during MR imaging-guided hyperthermia:In vitro feasibility studies[J]. Acad Radiol, 2000, 7(12):1107-1115.[21] FOSSHEIM S L, FAHLVIK A K, KLAVENESS J, et al. Paramagnetic liposomes as MRI contrast agents:Influence of liposomal physicochemical properties on the in vitro relaxivity[J]. Magn Reson Imaging, 1999, 17(1):83-89.[22] DAVIES G L, KRAMBERGER I, DAVIS J J. Environmentally responsive MRI contrast agents[J]. Chem Commun, 2013, 49(84):9704-9721.[23] TAGAMI T, FOLTZ W D, ERNSTING M J, et al. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome[J]. Biomaterials, 2011, 32(27):6570-6578.[24] DE SMET M, HEIJMAN E, LANGEREIS S, et al. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes:An in vivo proof-of-concept study[J]. J Control Release, 2011, 150(1):102-110.[25] LINDNER L H, REINL H M, SCHLEMMER M, et al. Paramagnetic thermosensitive liposomes for MR-thermometry[J]. Int J Hyperthermia, 2005, 21(6):575-588.[26] HEFFERN M C, MATOSZIUK L M, MEADE T J. Lanthanide probes for bioresponsive imaging[J]. Chem Rev, 2014, 114(8):4496-4539.[27] HINGORANI D V, BERNSTEIN A S, PAGEL M D. A review of responsive MRI contrast agents:2005-2014[J]. Contrast Media Mol, 2015, 10(4):245-265.[28] ZHANG S R, MALLOY C R, SHERRY A D. MRI thermometry based on PARACEST agents[J]. J Am Chem Soc, 2005, 127(50):17572-17573.[29] LI A X, WOJCIECHOWSKI F, SUCHY M, et al. A sensitive PARACEST contrast agent for temperature MRI:Eu<sup>3+</sup>-DOTAM-Glycine (Gly)-Phenylalanine (Phe)[J]. Magn Reson Med, 2008, 59(2):374-381.[30] MCVICAR N, LI A X, SUCHY M, et al. Simultaneous in vivo pH and temperature mapping using a PARACEST-MRI contrast agent[J]. Magn Reson Med, 2013, 70(4):1016-1025.[31] MULLER R N, VANDER ELST L, LAURENT S. Spin transition molecular materials:Intelligent contrast agents for magnetic resonance imaging[J]. J Am Chem Soc, 2003, 125(27):8405-8407.[32] SIGOLAEVA L V, GLADYR S Y, GELISSEN A P H, et al. Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications[J]. Biomacromolecules, 2014, 15(10):3735-3745.[33] SHIRAKURA T, KELSON T J, RAY A, et al. Hydrogel nanoparticles with thermally controlled drug release[J]. ACS Macro Lett, 2014, 3(7):602-606.[34] LI P H, XU R Z, WANG W H, et al. Thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release[J]. Colloid Surfaces B, 2013, 101:251-255.[35] LYON L A, MENG Z, SINGH N, et al. Thermoresponsive microgel-based materials[J]. Chem Soc Rev, 2009, 38(4):865-874.[36] ZHENG X W, QIAN J C, TANG F, et al. Microgel-based thermosensitive MRI contrast agent[J]. ACS Macro Lett, 2015, 4(4):431-435.[37] BALASUBRAMANIAM S, POTHAYEE N, LIN Y, et al. Poly(N-isopropylacrylamide)-coated superparamagnetic iron oxide nanoparticles:relaxometric and fluorescence behavior correlate to temperature-dependent aggregation[J]. Chem Mater, 2011, 23(14):3348-3356.[38] SHUHENDLER A J, STARUCH R, OAKDEN W, et al. Thermally-triggered "off-on-off" response of gadolinium-hydrogel-lipid hybrid nanoparticles defines a customizable temperature window for non-invasive magnetic resonance imaging thermometry[J]. J Control Release, 2012, 157(3):478-484.[39] JEON I R, PARK J G, HANEY C R, et al. Spin crossover iron(Ⅱ) complexes as PARACEST MRI thermometers[J]. Chem Sci, 2014, 5(6):2461-2465.[40] ZHU X L, CHEN S Z, LUO Q, et al. Body temperature sensitive micelles for MRI enhancement[J]. Chem Commun, 2015, 51(44):9085-9088. |