[1] 荣国斌, 朱士正. 波谱数据表-有机化合物的结构解析[M]. 上海:华东理工大学出版社, 2002, 71-244.
[2] LI L D, LI L S. Study of 17O-NMR chemical shifts of hydroxy-contained compounds[J]. Chinese J Magn Reson, 2002, 19(2):115-123. 李利东, 李临生. 含羟基化合物的17O-NMR化学位移研究[J]. 波谱学杂志, 2002, 19(2):115-123.
[3] ZHANG L N, LI L S, LAN Y J, et al. Calculation of 15N NMR chemical shifts of amino groups in aliphatic anilines[J]. Chinese J Magn Reson, 2006, 23(2):225-240. 张丽娜, 李临生, 兰云军, 等. 脂肪胺类化合物氨基15N NMR化学位移规律的研究[J]. 波谱学杂志, 2006, 23(2):225-240.
[4] JIANG D, XU J, MIAO Z C. Stereochemical characterization of azabicyclo-type compounds by NMR spectroscopy[J]. Chinese J Magn Reson, 2014, 31(2):253-361. 姜丹, 徐佳, 缪振春. 氮杂双环型化合物结构的NMR研究[J]. 波谱学杂志, 2014, 31(2):253-361.
[5] TAPU D, DIXON D A, ROE C. 13C NMR spectroscopy of "arduengo-type" carbenes and their derivatives[J]. Chem Rev, 2009, 109:3385-3407.
[6] MEILER J, MEUSINGER R, WILL M. Fast determination of 13C NMR chemical shifts using artificial neural networks[J]. J Chem Inf Comput Sci, 2000, 40:1169-1176.
[7] IVANCIUC O, RABINE J P, CABROL-BASS D, et al. 13C NMR chemical shift prediction of sp2 carbon atoms in acyclic alkenes using neural networks[J]. J Chem Inf Comput Sci, 1996, 36:644-653.
[8] SAROTTI A M, PELLEGRINET S C. A multi-standard approach for GIAO 13C NMR calculations[J]. J Org Chem, 2009, 74:7254-7260.
[9] BAGNO A, RASTRELLI F, SAIELLI G. Predicting 13C NMR spectra by DFT calculations[J]. J Phys Chem A, 2003, 107:9964-9973.
[10] KLEINPETER E, KOCH A. π-Delocalization in oligoalkynes induced by push-pull substituents and 1,3-conjugation:A combined 13C NMR and computational study[J]. J Phys Chem A, 2009, 113:10852-10857.
[11] KONSTANTINOV I A, BROADBELT L J. Regression formulas for density functional theory calculated 1H and 13C NMR chemical shifts in toluene-d8[J]. J Phys Chem A, 2011, 115:12364-12372.
[12] WANG Y N, JIN Q, LI H D, et al. Theoretical calculation of spectral characteristics of gefitinib[J]. Chinese J Magn Reson, 2015, 32(3):528-549. 王燕妮, 金芩, 李慧丹, 等. 吉非替尼谱学性质计算研究[J]. 波谱学杂志, 2015, 32(3):528-549.
[13] PENG J H, ZHAO D B, WEN B, et al. Determining structural models of biomolecular complexes integrating nuclear magnetic resonance, small-angle X-ray scattering and computational simulations[J]. Chinese J Magn Reson, 2015, 32(2):182-191. 彭俊辉, 赵德彪, 文彬, 等. 核磁共振、X射线小角散射以及计算机模拟相结合构建生物大分子复合物的结构模型[J]. 波谱学杂志, 2015, 32(2):182-191.
[14] YI G Y, CAO C Z. Influence of substituent effects on the 13C NMR chemical shifts of aliphatic alcohols[J]. Chinese J Magn Reson, 2009, 26(1):58-74. 易贵元, 曹晨忠. 取代基效应对脂肪醇13C NMR化学位移的影响[J]. 波谱学杂志, 2009, 26(1):58-74.
[15] YI G Y, CAO C Z. Influence of electronegativity, polarizability and steric effects on the 13C nuclear magnetic resonance chemical shift of aliphatic amines[J]. Anal Chem, 2009, 37(2):205-210. 易贵元, 曹晨忠. 电负性效应、极化效应和立体效应对脂肪胺核磁共振谱化学位移的影响[J]. 分析化学, 2009, 37(2):205-210.
[16] NEUVONEN H, NEUVONEN K, FÜLÖP F. Substituent cross-interaction effects on the electronic character of the C=N bridging group in substituted benzylidene anilines models for molecular cores of mesogenic compounds. A 13C NMR study and comparison with theoretical results[J]. J Org Chem, 2006, 71:3141-3148.
[17] CAO C Z, LU B T, CHEN G F. Investigation of the substituent specific cross-interaction effects on 13C NMR of the C=N bridging group in substituted benzylidene anilines[J]. J Phys Org Chem, 2011, 24:335-341.
[18] CHEN G F, CAO C Z, SHENG B, et al. Substituent effect study on δC values of the bridge group carbons in disubstituted cinnamyl aniline series[J]. J. Phys Org Chem, 2012, 25:828-834.
[19] CHEN G F, CAO C Z, ZHU Y, et al. The alternating of substituent effect on the 13C NMR shifts of all bridge carbons in cinnamyl aniline derivatives[J]. Spectrochim Acta A, 2012, 99:218-222.
[20] FANG Z J, CAO C Z, CHEN G F. Substituent effects on the 13C NMR chemical shifts of the imine carbon in N-(4-X-benzylidene)-4- (4-Y-styryl) anilines[J]. J Phys Org Chem, 2012, 25:1343-1350.
[21] FANG Z J, CAO C Z. Effect of molecular conformation on spectroscopic properties of symmetrical Schiff bases derived from 1, 4-phenylenediamine[J]. J Mol Struct, 2013, 1036:447-451.
[22] FANG Z J, CAO C Z, WU W H, et al. Long-range transmission of substituent effects on 13C NMR chemical shifts of imine carbon in benzylidene anilines[J]. J Phys Org Chem, 2013, 26:249-255.
[23] CAO C T, WEI B Y, CAO C Z. Effect of substituents on the NMR and UV spectra of N-(4-substituted benzylidene) anilines and N-(4-substituted benzylidene) cyclohexylamines[J]. Acta Phys-Chim Sin, 2015, 31(2):204-210. 曹朝暾, 魏佰影, 曹晨忠. 取代基效应对N-4-取代苯亚甲基苯胺与N-4-取代苯亚甲基环己胺NMR和UV光谱影响的差异性[J]. 物理化学学报, 2015, 31(2):204-210.
[24] CAO Z Z, CAO C T, CAO C Z. Comparison of the 13C(C=N) chemical shifts of substituted N-(phenyl-ethylene)-anilines and substituted N-(benzylidene)-anilines[J]. J Phys Org Chem, 2015, 28(8):564-569.
[25] CAO C Z, BI Y K, CAO C T. Effect of substituents on reduction potential of para-disubstituted N-Benzylidenebenzenamine derivatives[J]. Chin J Org Chem, 2015, 35(6):1302-1309. 曹晨忠, 毕亚坤, 曹朝暾. 对位-二取代氮苄叉苯胺还原电位的取代基效应[J]. 有机化学, 2015, 35(6):1302-1309.
[26] BINEV Y, CORVO M, AIRES-DE-SOUSA J. The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks[J]. J Chem Inf Comput Sci, 2004, 44:946-949.
[27] SAROTTI A M, PELLEGRINET S C. Application of the multi-standard methodology for calculating 1H NMR chemical shifts[J]. J Org Chem, 2012, 77:6059-6065.
[28] SUN H, YE K, WANG C, et al. The π-π stacked geometries and association thermodynamics of quinacridone derivatives studied by 1H NMR[J]. J Phys Chem A, 2006, 110:10750-10756.
[29] WANG L Y, CAO C T, CAO C Z. Comparison of the substituent effects on the 13C NMR with the 1H NMR chemical shifts of CH=N in substituted benzylideneanilines[J]. Magn Reson Chem, 2015, 53(7):520-525.
[30] LIU S J, WANG Y H, JIANG J Y, et al. The selective reduction of nitroarenes to N-arylhydroxylamines using Zn in a CO2/H2O system[J]. Green Chem, 2009, 11:1397-1400.
[31] 曹晨忠. 有机化学中的取代基效应[M]. 北京:科学出版社, 2003, 71-82.
[32] NEEDHAM D E, WEI I C. Seybold P G, Molecular modeling of the physical properties of alkanes[J]. J Am Chem Soc, 1988, 110:4186-4194.
[33] LIU F P, LIANG Y Z, CAO C Z, et al. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices[J]. Talanta, 2007, 72:1307-1315. |