[1] Palmer T, Berks B C. The twin-arginine translocation (Tat) protein export pathway[J]. Nat Rev Micro, 2012, 10(7): 483-496.[2] Sargent F. The twin-arginine transport system: moving folded proteins across membranes[J]. Biochem Soc Trans, 2007, 35(Pt 5): 835-847.[3] Weiner J H, Bilous P T, Shaw G M, et al. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins[J]. Cell, 1998, 93(1): 93-101.[4] Sargent F, Bogsch E G, Stanley N R, et al. Overlapping functions of components of a bacterial Sec-independent protein export pathway[J]. EMBO J, 1998, 17(13): 3 640-3 650.[5] Bogsch E G, Sargent F, Stanley N R, et al. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria[J]. J Biol Chem, 1998, 273(29): 18 003-18 006.[6] Sargent F, Stanley N R, Berks, B C, et al. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein[J]. J Biol Chem, 1999, 274(51): 36 073-36 082.[7] Jongbloed J D, Grieger U, Antelmann H, et al. Two minimal Tat translocases in Bacillus[J]. Mol Microbiol, 2004, 54(5): 1 319-1 325.[8] Gohlke U, Pullan L, McDevitt C A, et al. The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter[J]. Proc Natl Acad Sci USA, 2005, 102(30): 10 482-10 486.[9] Dabney-Smith C, Mori H, Cline K. Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport[J]. J Biol Chem, 2006, 281(9): 5 476-5 483.[10] Leake M C, Greene N P, Godun R M, et al. Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging[J]. Proc Natl Acad Sci USA, 2008, 105(40): 15 376-15 381.[11] de Leeuw E, Granjon T, Porcelli I, et al. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes[J]. J Mol Biol, 2002, 322(5): 1 135-1 146.[12] Cline K, Mori H. Thylakoid deltapH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport[J]. J Cell Biol, 2001, 154(4): 719-729.[13] Alami M, Lüke I, Deitermann S, et al. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli[J]. Mol Cell, 2003, 12(4): 937-946.[14] Yahr T L, Wickner W T. Functional reconstitution of bacterial Tat translocation in vitro[J]. EMBO J, 2001, 20(10): 2 472-2 479.[15] Westermann M, Pop O I, Gerlach R, et al. The TatAd component of the Bacillus subtilis twin-arginine protein transport system forms homo-multimeric complexes in its cytosolic and membrane embedded localization[J]. Biochim Biophys Acta, 2006, 1 758(4): 443-451.[16] Barnett J P, Eijlander R T, Kuipers O P, et al. A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes[J]. J Biol Chem, 2006, 283(5): 2 534-2 542.[17] Pop O I, Westermann M, Volkmer-Engert R, et al. Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis[J]. J Biol Chem, 2003, 278(40): 38 428-38 436.[18] Rollauer S E, Tarry M J, Graham J E, et al. Structure of the TatC core of the twin-arginine protein transport system[J]. Nature, 2012, 492(7428): 210-214.[19] Ramasamy S, Abrol R, Suloway C J, et al. The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation[J]. Structure, 2013, 21(5): 777-788. [20] Rodriguez F, Rouse S L, Tait C E, et al. Structural model for the protein-translocating element of the twin-arginine transport system[J]. Proc Natl Acad Sci USA, 2013, 110(12): E1 092-E1 101.[21] Zhang Y, Hu Y, Li H, et al. Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure[J]. PLoS One, 2014, 9(8): e103157[22] Zhang Y, Wang L, Hu Y, et al. Solution structure of the TatB component of the twin-arginine translocation system[J]. Biochim Biophys Acta, 2014, 1838(7): 1 881-1 888.[23] Hu Y, Zhao E, Li H, et al. Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis[J]. J Am Chem Soc, 2010, 132(45): 15 942-15 944.[24] Walther T H, Grage S L, Roth N, et al. Membrane alignment of the pore-forming component TatAd of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy[J]. J Am Chem Soc, 2010, 132(45): 15 945-15 956.[25] Walther T H, Gottselig C, Grage S L, et al. Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism[J]. Cell, 2013, 152(1-2): 316-326.[26] Pop O, Martin U, Abel C, et al. The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous Tat translocation system[J]. J Biol Chem, 2002, 277(5): 3 268-3 273.[27] Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulse field gradients[J]. Prog Nucl Magn Reson Spect, 1999, 34: 93-158.[28] Delaglio F, Grzesiek S, Vuister G W, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3): 277-293.[29] Johnson B A. Using NMRView to visualize and analyze the NMR spectra of macromolecules[J]. Methods Mol Biol, 2004, 278: 313-352.[30] Lorieau J, Yao L, Bax A. Liquid crystalline phase of G-tetrad DNA for NMR study of detergent-solubilized proteins[J]. J Am Chem Soc, 2008, 130(24): 7 536-7 537.[31] Ottiger M, Delaglio F, Bax A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra[J]. J. Magn. Reson. 1998, 131(2): 373-378.[32] Zweckstetter M. NMR: prediction of molecular alignment from structure using the PALES software[J]. Nat Protoc, 2008, 3(4): 679-690.[33] Dosset P, Hus J C, Marion D, et al. A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings[J]. J Biomol NMR, 2001, 20(3): 223-231.[34] Cornilescu G, Delaglio F, Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology[J]. J Biomol NMR, 1999, 13(3): 289-302.[35] Schwieters C D, Kuszewski J J, Tjandra N, et al. The Xplor-NIH NMR molecular structure determination package[J]. J Magn Reson, 2003, 160(1): 65-73.[36] Farrow N A, Muhandiram R, Singer A U, et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation[J]. Biochemistry, 1994, 33(19): 5 984-6 003.[37] Barrett C M, Mathers J E, Robinson C. Identification of key regions within the Escherichia coli TatAB subunits[J]. FEBS Lett, 2003, 537(1-3): 42-46.[38] Hicks M G, de Leeuw E, Porcelli I, et al. The Escherichia coli twin-arginine translocase: conserved residues of TatA and TatB family components involved in protein transport[J]. FEBS Lett, 2003, 539(1-3): 61-67.[39] White G F, Schermann S M, Bradley J, et al. Subunit organization in the TatA complex of the twin arginine protein translocase: a site-directed EPR spin labeling study[J]. J Biol Chem, 2010, 285(4): 2 294-2 301.[40] Greene N P, Porcelli I, Buchanan G, et al. Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase[J]. J Biol Chem, 2007, 282(33): 23 937-23 945.[41] Barrett C M L, Mangels D, Robinson C. Mutations in subunits of the Escherichia coli twin-arginine translocase block function via differing effects on translocation activity or tat complex structure[J]. J Mol Biol, 2005, 347(2): 453-463.[42] Hicks M G, Lee P A, Georgiou G, et al. Positive selection for loss-of-function tat mutations identifies critical residues required for TatA activity[J.] J Bacteriol, 2005, 187(8): 2 920-2 925.[43] Gouffi K, Gérard F, Santini C L, et al. Dual topology of the Escherichia coli TatA protein[J]. J Biol Chem, 2004, 279(12): 11 608-11 615.[44] Chan C S, Zlomislic M R, Tieleman D P, et al. The TatA subunit of Escherichia coli twin-arginine translocase has an N-in topology[J]. Biochemistry, 2007, 46(25): 7 396-7 404.[45] Behrendt J, Standar K, Lindenstrauss U, et al. Topological studies on the twin-arginine translocase component TatC[J]]. FEMS Microbiol Lett, 2004, 234(2): 303-308.[46] Gouffi K, Santini C L, Wu L F. Topology determination and functional analysis of the Escherichia coli TatC protein[J]. FEBS Lett, 2002, 525(1-3): 65-70.[47] Kneller J M, Lu M, Bracken C. An effective method for the discrimination of motional anisotropy and chemical exchange[J]. J Am Chem Soc, 2002, 124(9): 1 852-1 853.[48] Lange C, Müller S D, Walther T H, et al. Structure analysis of the protein translocating channel TatA in membranes using a multi-construct approach[J]. Biochim Biophys Acta, 2007, 1 768(10): 2 627-2 634.[49] Porcelli I, de Leeuw E, Wallis R, et al. Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system[J]. Biochemistry, 2002, 41(46): 13 690-13 697.[50] Mikhaleva N I, Santini C L, Giordano G, et al. Requirement for phospholipids of the translocation of the trimethylamine N-oxide reductase through the Tat pathway in Escherichia coli[J]. FEBS Lett, 1999, 463(3): 331-335. |