[1] Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv für Mikroskopische Anatomie, 1873, 9(1): 413-468.[2] Lewis A, Isaacson M, Harootunian A, et al. Development of a 500-a spatial-resolution light-microscope. 1. Light is efficiently transmitted through gamma-16 diameter apertures[J]. Ultramicroscopy, 1984, 13(3): 227-231.[3] Pohl D W, Denk W, Lanz M. Optical stethoscopy-image recording with resolution lambda/20[J]. Appl Phys Lett, 1984, 44(7): 651-653.[4] Rugar D, Budakian R, Mamin H J, et al. Single spin detection by magnetic resonance force microscopy[J]. Nature, 2004, 430: 329-332.[5] Zwiller V, Bjork G. Improved light extraction from emitters in high refractive index materials using solid immersion lenses[J]. J Appl Phys, 2002, 92(2): 660-665.[6] Siyushev P, Kaiser F, Jacques V, et al. Monolithic diamond optics for single photon detection[J]. Appl Phys Lett, 2010, 97(24): 241 902.[7] Wilson T, Sheppard C J R. Theory and Practice of Scanning Optical Microscopy[M]. New York: Academic Press, 1984. [8] Pawley J B. Handbook of Biological Confocal Microscopy (2nd ed) [M]. New York: Springer, 2006.[9] Hell S W, Stelzer E H K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation[J]. Opt Commun, 1992, 93(5-6): 277-282.[10] Gustafsson M G L, Agard D A, Sedat J W. Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses[J]. Proc SPIE, 1995, 2 412: 147-156.[11] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780-782.[12] Hell S W, Kroug M. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit[J]. Appl Phys B, 1995, 60(5): 495-497.[13] Hell S W, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy[J]. Curr Opin Neurobiol, 2004, 14(5): 599-609.[14] Heisenberg W. The Physical Principles of the Quantum Theory[M]. Chicago: Chicago Univ Press, 1930.[15] Hell S W, Westphal V. Nanoscale resolution in the focal plane of an optical microscope[J]. Phys Rev Lett, 2005, 94(14): 143903.[16] Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5 828): 1 153-1 158.[17] Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Opt Lett, 1999, 24(14): 954-956[18] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3): 144-147.[19] Maurer P C, Maze J R, Stanwix P L, et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution[J]. Nature Physics, 2010, 6(11): 912-918.[20] Willig K I, Harke B, Medda R, et al. STED microscopy with continuous wave beams[J]. Nat Methods, 2007, 4(11): 915-918.[21] Hell S W, Vicidomini G, Moneron G, et al. Sharper low-power STED nanoscopy by time gating[J]. Nat Methods, 2011, 8(7): 571-575. [22] Hell S W, Donnert G, Keller J, et al. Macromolecular-scale resolution in biological fluorescence microscopy[J]. Proc Natl Acad, Sci USA, 2006, 103(31): 11 440-11 445.[23] Rittweger E, Wildanger D, Hell S W. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion[J]. EPL, 2009, 86: 14001.[24] Mansfield S M, Kino G S. Solid immersion microscope[J]. Appl Phys Lett, 1990, 57: 2 615-2 616.[25] Feynman R P. There is plenty of room at the bottom[J]. Engineering and Science, 1960, 23(5): 22-36.[26] Feynman R P. Simulating physics with computers[J]. Int J Theor Phys, 1982, 21(6): 467-488.[27] Feynman R P. Quantum mechanical computers[J]. Optics News, 1985, 2: 11-20.[28] Deutsch D. Quantum theory, the church-turing principle and the universal quantum computer[J]. Proc R Soc London Ser A, 1985, 400(1818): 97-117.[29] Shor P W. Proceedings of the 35th annual symposium on the foundation of computer science[C]. Los Alamitos, IEEE Computer Society Press, 1994.[30] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys Rev Lett, 1997, 79(2): 325.[31] Nielsen M A, Chuang I L. Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2000.[32] Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Phys Rev A, 1995, 52: R2493.[33] Popa I. Pulsed magnetic resonance on single defect centers in diamond[D]. Stuttgart, University of Stuttgart, 2006.[34] Lenef A, Rand S C. Electronic structure of the n-v center in diamond: Theory[J]. Phys Rev B, 1996, 53: 13 441.[35] Gaebel T, Domhan M, Wittmann C, et al. Photochromism in single nitrogen-vacancy defect in diamond[J]. Appl Phys B, 2006, 82(2): 243-246.[36] Mita Y. Change of absorption spectra of type-ib diamond with heavy neutron irradiation[J]. Phys Rev B, 1996, 53: 11 360.[37] Goss J P, Jones R, Briddon P R, et al. Comment on “electronic structure of the n-v center in diamond: Theory”[J]. Phys Rev B, 1997, 56: 16 031-16 032.[38] Jelezko F, Popa I, Gruber A, et al. Single spin states in a defect center resolved by optical spectroscopy[J]. Appl Phys Lett, 2002, 81: 2 160-2 162.[39] Steiner M, Neumann P, Beck J, et al. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond[J]. Phys Rev B, 2010, 81: 035205.[40] Doherty M W, Manson N B, Delaney P, et al. The negatively charged nitrogen-vacancy centre in diamond: the electronic solution[J]. New J Phys, 2009, 13: 025019.[41] Neumann P, Kolesov R, Jacques V, et al. Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance[J]. New J Phys, 2009, 11: 013017.[42] Manson N B, Harrison J P, Sellars M J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics[J]. Phys Rev B, 2006, 74: 104303.[43] Warchtrup J, Jelezko F. Processing quantum information in diamond[J]. J Phys: Condens Matter, 2006, 18: S807-S824.[44] Van Oort E, Manson N B, Glasbeek M. Optically detected spin coherence of the diamond N-V centre in its triplet ground state[J]. J Phys C: Solid State Phys, 1988, 21: 4 385.[45] Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276: 2 012-2 014.[46] Childress L I. Coherent manipulation of single quantum systems in the solid state[D]. Massachusetts: Harvard University. 2007.[47] Jelezko F, Wrachtrup J. Single defect centres in diamond: A review[J]. Phys Stat Sol, 2006, 203(13): 3 207-3 225.[48] Shi F, Rong X, Xu N, et al. Room-temperature implementation of the deutsch-jozsa algorithm with a single electronic spin in diamond[J]. Phys Rev Lett, 2010, 105: 040504[49] Neumann P, Beck J, Steiner M, et al. Single-shot readout of a single nuclear spin[J]. Science, 2010, 329: 542-544[50] Waldherr G, Wang Y, Zaiser S, et al. Quantum error correction in a solid-state hybrid spin register[J]. Nature, 2014, 506: 204-207[51] Maurer P C, Kucsko G, Latta C, et al. Room-temperature quantum bit memory exceeding one second[J]. Science, 2012, 336: 1 283-1 286[52] Dolde F, Jakobi I, Naydenov B, et al. Room-temperature entanglement between single defect spins in diamond[J]. Nat Phys, 2013, 9: 139-143[53] Bernien H, Hensen B, Pfaff W, et al. Heralded entanglement between solid-state qubits separated by three metres[J]. Nature, 2013, 497: 86-90 |