波谱学杂志 ›› 2015, Vol. 32 ›› Issue (2): 248-260.doi: 10.11938/cjmr20150208
汪臣才,李 昭,林永雅*
收稿日期:
2015-03-22
修回日期:
2015-05-15
出版日期:
2015-06-05
发布日期:
2015-06-05
作者简介:
*通讯联系人:林永雅,电话:+1-310 206 2856,E-mail:yylin@chem.ucla.edu.
基金资助:
The Camille and Henry Dreyfus Foundation (TC-05-053), National Science Foundation (DMS-0833863, CHE-1112574, and CHE-1416598), and Hirshberg Foundation for Pancreatic Cancer Research.
WANG Chen-cai,LI Zhao,LIN Yung-ya*
Received:
2015-03-22
Revised:
2015-05-15
Online:
2015-06-05
Published:
2015-06-05
About author:
WANG Chen-cai (1990-), male, born in Jilin, PhD. candidate. His research focuses on MRI.
*Corresponding author: LIN Yung-ya, Tel: +1-310 206 2856, E-mail: yylin@chem.ucla.edu.
Supported by:
The Camille and Henry Dreyfus Foundation (TC-05-053), National Science Foundation (DMS-0833863, CHE-1112574, and CHE-1416598), and Hirshberg Foundation for Pancreatic Cancer Research.
摘要:
磁共振热疗(magnetic resonance hyperthermia)是近年来新兴的一种纳米医学治疗方法,由磁共振的硬件架构产生特定交变磁场,有效地加热磁性纳米粒子,以直接或间接地杀死癌细胞,体现诊疗一体化.提高磁性纳米粒子的加热效率是当前磁共振热疗领域亟待解决的难题之一.磁性纳米粒子的加热效率不仅与粒子本身的大小、性质以及尺寸分布有关,还和聚集状态有关.该研究利用3D Metropolis 蒙特卡罗模拟方法,模拟了不同温度下磁性纳米粒子的磁共振热动力学行为及其团聚与分离现象;并通过修正过的郎之万方程,建立了相变临界温度与外加磁场频率的函数关系.模拟结果显示,磁性纳米粒子悬浮液中多聚体的相对含量随着温度的升高而降低,达到临界温度后,多聚体完全分离成单体;而提高交变磁场频率可以显著降低临界温度,且存在临界频率,高于此临界频率后临界温度不再受外加磁场频率影响,达到稳定.因而在临界频率下预热磁性纳米粒子悬浮液,使得多聚体分离成单体,可优化磁性纳米粒子的热疗效率.
中图分类号:
汪臣才,李 昭,林永雅*. 优化磁共振纳米医学中磁性纳米粒子的热疗效率[J]. 波谱学杂志, 2015, 32(2): 248-260.
WANG Chen-cai,LI Zhao,LIN Yung-ya*. Optimizing Magnetic Nanoparticle Hyperthermia Effect in Magnetic Resonance Nanomedicine[J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 248-260.
[1] Jordan A, Wust P, F?hling H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia[J]. Int J Hyperther, 2009, 25: 499-511.[2] Krishnan K M. Biomedical Nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy[J]. IEEE Trans Magn, 2010, 46: 2 523-2 558.[3] Gordon R T, Hines J R, Gordon D A. Biophysical approach to cancer treatment via intracellular temperature and biophysical alterations[J]. Med Hypotheses, 1979, 5: 83-102.[4] Jordan A, Wust P, Scholz R, et al. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro[J]. Int J Hyperther, 1996, 12: 705-722.[5] Alexey O I, Sofia S K, Valentin S M, et al. Ferrofluid aggregation in chains under the influence of a magnetic field[J]. J Magn Magn Mater, 2006, 300(l): e206-e209.[6] Morais P C, Gonçalves G R R, Bakuzis A F, et al. Experimental evidence of dimer disruption in ionic ferrofluid: A ferromagnetic resonance investigation[J]. J Magn Magn Mater, 2001, 225: 84-88.[7] Zhong J, Xiang Q, Massa L O, et al. Second-order-like cluster-monomer transition within magnetic fluids and its impact upon the magnetic susceptibility[J]. Nanoscale Res Lett, 2012, 7: 167.[8] Du Z, Liu W, Zhong J, et al. Signature of cluster disruption within magnetic fluid samples: The key information provided by low frequency alternating current susceptibility measurements[J]. J Appl Phys, 2014, 115: 194310.[9] Ganguly R, Zellmer B, Puri I K. Field-induced Self-assembled ferrofluid aggregation in pulsatile flow[J]. Phys Fluids, 2005, 17: 097104.[10] Xiang Q, Zhong J, Zhou M, et al. AC field dependence of cluster disruption in magnetic fluids[J]. J Appl Phys, 2011, 109: 07B317.[11] Wang X, Gu H, Yang Z. The heating effect of magnetic fluids in an alternating magnetic field[J]. J Magn Magn Mater, 2005, 293: 334.[12] Rosensweig R E. Heating magnetic fluid with alternating magnetic field[J]. J Magn Magn Mater, 2002, 252: 370. [13] Ondeck C L, Habib A H, Ohodnicki P, et al. Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating[J]. J Appl Phys, 2009, 105: 07B324.[14] Skumiel A, ?abowski M. The heating effect of the biocompatible ferrofluid in an alternating magnetic field[J]. Molecular and Quantum Acoustics, 2006, 27: 233-238.[15] Chantrell R W, Popplewell J, Charles S W. Measurements of particle-size distribution parameters in ferrofluids[J]. IEEE Trans Magn, 1978, 14 (5): 975-977.[16] Hwang D W, Lin Y Y, Hwang L P. Studies of magnetic resonance imaging with active feedback RF field[J]. Chinese J Magn Reson, 2010, 27 (3): 409-416.[17] Huang S Y, Walls J D, Lin Y Y. Periodic control of spin turbulence in solution magnetic resonance[J]. Chinese J Magn Reson, 2010, 27 (3): 425-435.[18] Li Z, Hsu C H, Dimitrov N, et al. Sensitive imaging of magnetic nanoparticles for cancer detection by active feedback MR[J]. Magn Reson Med, 2015, DOI: 10.1002/mrm.25632.[19] Hilger I, Kaiser W A. Iron oxide-based nanostructures for MRI and magnetic hyperthermia[J]. Nanomedicine 2012, 7(9): 1 443-1 459. |
[1] | 赵尚义 王远军. 基于磁共振图像和改进的UNet++模型区分阿尔茨海默症患者和健康人群[J]. 波谱学杂志, 0, (): 0-0. |
[2] | 鲁 晨 董健健 钟 凯. 9.4T下TX模型鼠脑DTI成像研究[J]. 波谱学杂志, 0, (): 0-0. |
[3] | 王 可 张英华 李雨晴 邹定华. 固体核磁共振技术在水泥基材料研究中的应用[J]. 波谱学杂志, 0, (): 0-0. |
[4] | 刘可文 刘紫龙 汪香玉 陈黎 李钊 吴光耀 刘朝阳. 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 0, (): 0-0. |
[5] | 闫 松 屠小青 彭 梅. 光泵抽运3He极化程度监控系统的设计与实现[J]. 波谱学杂志, 0, (): 0-0. |
[6] | 张一鸣 陈志雪 杨晓云. 丁氟螨酯的波谱学数据解析与结构确证[J]. 波谱学杂志, 0, (): 0-0. |
[7] | 王 强 魏树峰 王 铮 杨文晖. 基于粒子群与遗传算法的矩阵式梯度线圈优化设计[J]. 波谱学杂志, 0, (): 0-0. |
[8] | 王佳鑫 冯继文 陈俊飞 王立英 刘朝阳. 魔角旋转固体核磁共振探头中转子的研制[J]. 波谱学杂志, 0, (): 0-0. |
[9] | 赵智慧 刘表兰 闫小双 武帅帅 茹阁英 毛诗珍 冯继文. PSSS50-b-PNIPAM300嵌段共聚物在二元溶剂中自组装的NMR研究[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 刘慧霞, 辛家祥, 魏达秀. 核自旋单重态的制备及其转化效率和寿命的影响因素分析 [J]. 波谱学杂志, 0, (): 0-0. |
[11] | 雷振宇, 梁欣苗#, 雷友义, 杨 丽, 冯继文. 固体核磁共振技术在锂/钠离子电池碳负极中的应用及研究进展 [J]. 波谱学杂志, 0, (): 0-0. |
[12] | 张之杰 李端秀 罗春 仇汝臣 邓宗武 张海禄. 晶体学辅助的2-吡啶甲酸固体13C化学位移理论计算归属[J]. 波谱学杂志, 0, (): 0-0. |
[13] | 包婉静 曾庆琦 余钫 秦蕾 陈智勇. 一种非连续微波探询信号的实现[J]. 波谱学杂志, 0, (): 0-0. |
[14] | 张芬芬 沈文斌 徐开兵 杨 明. 基于定量核磁共振氢谱测定新药替格瑞洛[J]. 波谱学杂志, 0, (): 0-0. |
[15] | 徐广永 董满园 马建锋 张利民.
固体核磁共振研究半晶聚-3-羟基丁酸酯和聚羟基丁酸戊酸酯的分子动力学(英文) [J]. 波谱学杂志, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||