[1] 李犇. 水化硅酸钙(C-S-H)凝胶的细观力学机理研究[D]. 哈尔滨:哈尔滨工程大学,2018 [2] 李建平. 利用魔角旋转固体核磁共振解析蛋白质结构的标记方法和应用研究[D]. 武汉:中国科学院武汉物理与数学研究所, 2015. [3] WU J Z, XIN J X, FU X B, et al. A wide-line solid-state 1H NMR study of phase structures of semi-crystalline polymers[J]. Chinese J Magn Reason, 2019, 36(1):23-33. 吴金泽, 辛家祥, 付晓彬, 等. 通过宽线固体核磁共振氢谱研究半晶高分子的相结构[J]. 波谱学杂志, 2019, 36(1):23-33. [4] SUN Y, CHEN Y K, LI J P, et al. Efficiency of double cross polarization in magic-angle spinning solid-state NMR studies on membrane proteins[J]. Chinese J Magn Reason, 2017, 34(3):257-265. 孙毅, 陈艳可, 李建平, 等. 固体核磁共振中膜蛋白双交叉极化效率与动力学参数相关的定量分析[J]. 波谱学杂志, 2017, 34(3):257-265. [5] MACDONALD J L, WERNER-ZWANZIGER U, CHEN B H, et al. A 43Ca and 13C NMR study of the chemical interaction between poly(ethylene-vinyl acetate) and white cement during hydration[J]. Solid State Nucl Magn Reson, 2011, 40(2):78-83. [6] SEVELSTED T F, HERFORT D, SKIBSTED J, et al. 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions[J]. Cement Concrete Res, 2013, 52:100-111. [7] FAVIER A, HABERT G, ROUSSEL N et al. A multinuclear static NMR study of geopolymerisation[J]. Cement Concrete Res, 2015, 75:104-109. [8] D'ESPINOSE DE LACAILLERIE J B, BARBERON F, BRESSON B, et al. Applicability of natural abundance 33S solid-state NMR to cement chemistry[J]. Cement Concrete Res, 2006, 36(9):1781-1783. [9] 邢智彪. 硅酸三钙晶体结构及其演化机理研究[D]. 南京:南京大学,2013. [10] XIAO J M, FAN H H, WU Y L, et al. 29Si solid state high resolution NMR analysis of cement clinkers calcined by sewage sludge ash instead of clay (in Chinese)[J]. Journal of Materials Science and Engineering, 2016, 34(3):460-464. 肖建敏, 范海宏, 武亚磊, 等. 污泥灰替代粘土煅烧水泥熟料的29Si固体高分辨核磁共振分析[J]. 材料科学与工程学报, 2016, 34(3):460-464. [11] JOHANSSON K, LARSSON C, OLED N. Kinetics of the hydration reactions in the cement paste with mechanochemically modified ement 29Si magic-angle-spinning NMR study[J]. Cement Concrete Res, 1999, 29:1575-1581. [12] MA B G, LI H N, LI X G, et al. Influence of nano-TiO2 on physical and hydration characteristics of fly ash-cement systems[J]. Constr Build Mater, 2016, 122:242-253. [13] ROTTSTEGGE J, WILHELM M, SPIESS H W. Solid state NMR investigations on the role of organic admixtures on the hydration of cement pastes[J]. Cement and Concrete Composites, 2006, 28(5):417-426. [14] LE SAOUT G, LÉCOLIER E, RIVEREAU A, et al. Chemical structure of cement aged at normal and elevated temperatures and pressures[J]. Cement Concrete Res, 2006, 36(1):71-78. [15] CARMONA-QUIROGA P M, MARTÍNEZ-RAMÍREZ S, SOBRADOS I, et al. Interaction between two anti-graffiti treatments and cement mortar (paste)[J]. Cement Concrete Res, 2010, 40(5):723-730. [16] WANG S D, SCRIVENER K L. 29Si and 27Al NMR study of alkali-activated slag[J]. Cement Concrete Res, 2003, 33(5):769-774. [17] PUERTAS F, TORRES-CARRASCO M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation[J]. Cement Concrete Res, 2014, 57:95-104. [18] QU B, MARTIN A, PASTOR J Y, et al. Characterisation of pre-industrial hybrid cement and effect of pre-curing temperature[J]. Cement and Concrete Composites, 2016, 73:281-288. [19] JOHANSSONA K, LARSSON C, ANTZUTKIN O A, et al. Kinetics of the hydration reactions in the cement paste with mechanochemically modified cement 29Si magic-angle-spinning NMR study[J]. Cement Concrete Res, 1999, 29(10):1575-1581. [20] WANG L, HE Z, ZHANG B, et al. Quantitative analysis of fly ash-cement hydration by 29Si MAS NMR[J]. Journal of the Chinese Ceramic Society, 2010, 38(11):2212-2216. 王磊, 何真, 张博, 等. 粉煤灰-水泥水化的核磁共振定量分析[J]. 硅酸盐学报, 2010, 38(11):2212-2216. [21] RUIZ-SANTAQUITERIA C, FERNÁNDEZ-JIMÉNEZ A, SKIBSTED J, et al. Clay reactivity:Production of alkali activated cements[J]. Appl Clay Sci, 2013, 73:11-16. [22] KUNTHER W, DAI Z, SKIBSTED J. Thermodynamic modeling of hydrated white Portland cement-metakaolin-limestone blends utilizing hydration kinetics from 29Si MAS NMR spectroscopy[J]. Cement Concrete Res, 2016, 86:29-41. [23] ANDERSEN M D, JAKOBSEN H J, SKIBSTED J. Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy[J]. Cement Concrete Res, 2004, 34(5):857-868. [24] MURGIER S, ZANNI H, GOUVENOT D. Blast furnace slag cement:a 29Si and 27Al NMR study[J]. Comptes Rendus Chimie, 2004, 7(3/4):389-394. [25] BRUNET F, CHARPENTIER T, CHAO C N, et al. Characterization by solid-state NMR and selective dissolution techniques of anhydrous and hydrated CEM V cement pastes[J]. Cement Concrete Res, 2010, 40(2):208-219. [26] MOBASHER N, BERNAL S A, PROVIS J L. Structural evolution of an alkali sulfate activated slag cement[J]. J Nucl Mater, 2016, 468:97-104. [27] PUERTAS F, FERNÁNDEZ-JIMÉNEZ A, BLANCO-VARELA M T. Relation to the composition and structure of calcium silicate hydrate[J]. Cement Concrete Res, 2004, 34(1):139-148. [28] WEI Y Q, YAO W, XING X M, et al. Quantitative evaluation of hydrated cement modified by silica fume using QXRD, 27Al MAS NMR, TG-DSC and selective dissolution techniques[J]. Constr Build Mate, 2012, 36:925-932. [29] PALACIOS M, PUERTAS F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cement Concrete Res, 2007, 37(5):691-702. [30] COLEMAN N J, LI Q. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(1):427-433. [31] PENA P, RIVAS MERCURY J M, DE AZA A H, et al. Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures[J]. J Solid State Chem, 2008, 181(8):1744-1752. [32] PARK S M, JANG J G, LEE N K, et al. Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures[J]. Cement Concrete Res, 2016, 89:72-79. [33] BROUGH A R, ATKINSON A. Sodium silicate-based, alkali-activated slag mortars part I. Strength, hydration and microstructure[J]. Cement Concrete Res, 2002, 32(6):865-879. [34] ANDERSEN M D, JAKOBSEN H J, SKIBSTED J. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy[J]. Cement Concrete Res, 2006, 36(1):3-17. [35] ROTTSTEGGE J, ARNOLD M, HERSCHKE L, et al. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems[J]. Cement Concrete Res, 2005, 35(12):2233-2243. [36] LIN C K, CHEN J N, LIN C C. An NMR, XRD and EDS study of solidification/stabilization of chromium with Portland cement and C3S[J]. J Hazard Mater, 1997, 56:21-34. [37] LIN C K, CHEN J N, LIN C C. An NMR and XRD study of solidification/stabilization of chromium with Portland cement and p-C2S[J]. J Hazard Mater, 1996, 48:21-34. [38] DA COSTA E B, RODRÍGUEZ E D, BERNAL S A, et al. Production and hydration of calcium sulfoaluminate-belite cements derived from aluminiumanodising sludge[J]. Construct Build Mater, 2016, 122:373-383. [39] WANG L, HE Z, ZHANG B, et al. Polymerization Mechanism of C-S-H:Identified by FTIR and NMR[J]. Journal of Building Materials, 2011, 14(4):447-451. 王磊,何真,张博, 等. 基于红外与核磁共振技术揭示C-S-H聚合机理[J]. 建筑材料学报, 2011, 14(4):447-451. [40] BERNAL S A, SAN NICOLAS R, MYERS R J, et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders[J]. Cement Concrete Res, 2014, 57:33-43. [41] SÁEZ DEL BOSQUE I F, MARTÍN-PASTOR M, SOBRADOS I, et al. Quantitative analysis of pure triclinic tricalcium silicate and C-S-H gels by 29Si NMR longitudinal relaxation time[J]. Constr Build Mater, 2016, 107:52-57. [42] SKIBSTED J, RASMUSSEN S, HERFORT D, et al. 29Si cross-polarization magic-angle spinning NMR spectroscopy-an efficient tool for quantification of thaumasite in cement-based materials[J]. Cement Concrete Comp, 2003, 25(8):823-829. [43] GUTBERLET T, HILBIG H, BEDDOE R E. Acid attack on hydrated cement-Effect of mineral acids on the degradation process[J]. Cement Concrete Res, 2015, 74:35-43. [44] KURUMISAWA K, NAWA T, OWADA H, et al. Deteriorated hardened cement paste structure analyzed by XPS and 29Si NMR techniques[J]. Cement Concrete Res, 2013, 52:190-195. [45] CAI X H, HE Z, SHAO Y X, et al. Macro-and micro-characteristics of cement binders containing high volume fly ash subject to electrochemical accelerated leaching[J]. Constr Build Mater, 2016, 116:25-35. [46] TRAPOTE-BARREIRA A, PORCAR L, CAMA J, et al. Structural changes in C-S-H gel during dissolution:Small-angle neutron scattering and Si-NMR characterization[J]. Cement Concrete Res, 2015, 72:76-89. [47] BERNAL S A, PROVIS J L, WALKLEY B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation[J]. Cement Concrete Res, 2013, 53:127-144. [48] PAUL G, BOCCALERI E, BUZZI L, et al. Friedel's salt formation in sulfoaluminate cements:A combined XRD and 27Al MAS NMR study[J]. Cement Concrete Res, 2015, 67:93-102. [49] KORB J P. NMR and nuclear spin relaxation of cement and concrete materials[J]. Curr Opin Colloid In, 2009, 14(3):192-202. [50] ZHOU Q J, XIANG J F, TANG Y L, et al. Pure shift proton NMR spectroscopy and its applications[J]. Chinese J Magn Reson, 2016, 33(3):502-513. 周秋菊,向俊锋,唐亚林, 等. 纯位移核磁共振氢谱及其应用[J]. 波谱学杂志, 2016, 33(3):502-513. [51] WALKLEY B, SAN NICOLAS R, SANI M A, et al. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors[J]. Cement Concrete Res, 2016, 89:120-135. [52] PLASSAISA A, POMIÈSA M P, LEQUEUXA N, et al. Micropore size analysis in hydrated cement paste by NMR[J]. Magn Reson Imaging, 200119(3/4):493-495. [53] HANSENA E W, GRANB H C, MACHABEÂE Y. FLR technique exchange of methanol/fluorescent dye with water in water-saturated cement paste examined by NMR[J]. Cement Concrete Res, 2005, 30(4):535-541. [54] MOUDRAKOVSKI I L, ALIZADEH R, BEAUDOIN J J. Natural abundance high field 43Ca solid state NMR in cement science[J]. Phys Chem Chem Phys, 2010, 12(26):6961-6969. [55] MINET J, ABRAMSON S, BRESSON B, et al. Organic calcium silicate hydrate hybrids:a new approach to cement based nanocomposites[J]. J Mater Chem, 2006, 16(14):1379. |