1 |
TIAN P , WEI Y X , YE M , et al. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal, 2015, 5 (3): 1922- 1938.
doi: 10.1021/acscatal.5b00007
|
2 |
ZHOU X , WANG C , CHU Y Y , et al. Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite[J]. Nat Commun, 2019, 10 (1): 1961.
doi: 10.1038/s41467-019-09956-7
|
3 |
VOGT E T C , WECKHUYSEN B M . Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis[J]. Chem Soc Rev, 2015, 44 (20): 7342- 7370.
doi: 10.1039/C5CS00376H
|
4 |
MOLINER M , ROMáN-LESHKOV Y , DAVIS M E . Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proc Nat Acad Sci U S A, 2010, 107 (14): 6164- 6168.
doi: 10.1073/pnas.1002358107
|
5 |
HAAG W O , LAGO R M , WEISZ P B . The active site of acidic aluminosilicate catalysts[J]. Nature, 1984, 309 (5969): 589- 591.
doi: 10.1038/309589a0
|
6 |
MAIER S M , JENTYS A , LERCHER J A . Steaming of zeolite BEA and its effect on acidity: A comparative NMR and IR spectroscopic study[J]. J Phys Chem C, 2011, 115 (16): 8005- 8013.
doi: 10.1021/jp108338g
|
7 |
KAO H M , GREY C P , PITCHUMANI K , et al. Activation conditions play a key role in the activity of zeolite CaY: NMR and product studies of Brønsted acidity[J]. J Phys Chem A, 1998, 102 (28): 5627- 5638.
doi: 10.1021/jp980385w
|
8 |
WANG Q L , GIANNETTO G , TORREALBA M , et al. Dealumination of zeolites Ⅱ. Kinetic study of the dealumination by hydrothermal treatment of a NH4NaY zeolite[J]. J Catal, 1991, 130 (2): 459- 470.
doi: 10.1016/0021-9517(91)90128-Q
|
9 |
YU Z W , LI S H , WANG Q , et al. Brønsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy[J]. J Phys Chem C, 2011, 115 (45): 22320- 22327.
doi: 10.1021/jp203923z
|
10 |
YI X , LIU K , CHEN W , et al. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites[J]. J Am Chem Soc, 2018, 140 (34): 10764- 10774.
doi: 10.1021/jacs.8b04819
|
11 |
GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable y zeolites during hydrothermal aging: A solid-state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103.
|
|
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103.
|
12 |
GAO W , QI G D , WANG Q , et al. Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy[J]. Angew Chem Int Ed, 2021, 60 (19): 10709- 10715.
doi: 10.1002/anie.202017074
|
13 |
GAO P , WANG Q , XU J , et al. Brønsted/Lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, As studied by solid-state NMR spectroscopy[J]. ACS Catal, 2018, 8 (1): 69- 74.
doi: 10.1021/acscatal.7b03211
|
14 |
QI G D , WANG Q , XU J , et al. Synergic effect of active sites in zinc-modified ZSM-5 zeolites as revealed by high-field solid-state NMR spectroscopy[J]. Angew Chem Int Ed, 2016, 55 (51): 15826- 15830.
doi: 10.1002/anie.201608322
|
15 |
CHEN X L , LV W , SU Q C , et al. Conversion of lignocellulose studied by nuclear magnetic resonance[J]. Chinese J Magn Reson, 2021, 38 (2): 277- 290.
|
|
陈晓丽, 吕微, 苏秋成, 等. 核磁共振技术在生物质转化中的应用[J]. 波谱学杂志, 2021, 38 (2): 277- 290.
|
16 |
MORENO-RECIO M , SANTAMARíA-GONZáLEZ J , MAIRELES-TORRES P . Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural[J]. Che Eng J, 2016, 303, 22- 30.
doi: 10.1016/j.cej.2016.05.120
|
17 |
SUGANUMA S , HISAZUMI T , TARUYA K , et al. Influence of acidic property on catalytic activity and selectivity in dehydration of glycerol[J]. ChemistrySelect, 2017, 2 (20): 5524- 5531.
doi: 10.1002/slct.201700941
|
18 |
WANG Z C , O'DELL L A , ZENG X , et al. Insight into three-coordinate aluminum species on ethanol-to-olefin conversion over ZSM-5 zeolites[J]. Angew Chem Int Ed, 2019, 58 (50): 18061- 18068.
doi: 10.1002/anie.201910987
|
19 |
LI S H , ZHENG A M , SU Y C , et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc, 2007, 129 (36): 11161- 11171.
doi: 10.1021/ja072767y
|
20 |
GROEN J C , BACH T , ZIESE U , et al. Creation of hollow zeolite architectures by controlled desilication of Al-Zoned ZSM-5 crystals[J]. J Am Chem Soc, 2005, 127 (31): 10792- 10793.
doi: 10.1021/ja052592x
|
21 |
GARRALóN G , FORNéS V , CORMA A . Faujasites dealuminated with ammonium hexafluorosilicate: Variables affecting the method of preparation[J]. Zeolites, 1988, 8 (4): 268- 272.
doi: 10.1016/S0144-2449(88)80122-2
|
22 |
KAO H M , CHEN Y C . 27Al and 19F solid-state NMR studies of zeolite H-β dealuminated with ammonium hexafluorosilicate[J]. J Phys Chem B, 2003, 107 (15): 3367- 3375.
doi: 10.1021/jp021680q
|
23 |
KAO H M , CHANG P C . Direct solid-state NMR spectroscopic evidence for the NH4AlF4 crystalline phase derived from zeolite HY dealuminated with ammonium hexafluorosilicate[J]. J Phys Chem B, 2006, 110 (39): 19104- 19107.
doi: 10.1021/jp064938b
|
24 |
WANG Q L , TORREALBA M , GIANNETTO G , et al. Dealumination of Y zeolite with ammonium hexafluorosilicate: A SIMS-XPS study of the aluminum distribution[J]. Zeolites, 1990, 10 (7): 703- 706.
doi: 10.1016/0144-2449(90)90084-5
|
25 |
SILVA J M , RIBEIRO M F , RAMôA RIBEIRO F , et al. Influence of the treatment of mordenite by ammonium hexafluorosilicate on physicochemical and catalytic properties[J]. Zeolites, 1996, 16 (4): 275- 280.
doi: 10.1016/0144-2449(95)00138-7
|
26 |
SCHALLMOSER S , IKUNO T , WAGENHOFER M F , et al. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking[J]. J Catal, 2014, 316, 93- 102.
doi: 10.1016/j.jcat.2014.05.004
|
27 |
CHEN K Z , ABDOLRHAMANI M , SHEETS E , et al. Direct detection of multiple acidic proton sites in zeolite HZSM-5[J]. J Am Chem Soc, 2017, 139 (51): 18698- 18704.
doi: 10.1021/jacs.7b10940
|
28 |
XIN S H , WANG Q , XU J , et al. The acidic nature of "NMR-invisible" tri-coordinated framework aluminum species in zeolites[J]. Chem Sci, 2019, 10 (43): 10159- 10169.
doi: 10.1039/C9SC02634G
|
29 |
WANG Y X , XIN S H , CHU Y Y , et al. Influence of trimethylphosphine oxide loading on the measurement of zeolite acidity by solid-state NMR spectroscopy[J]. J Phys Chem C, 2021, 125 (17): 9497- 9506.
doi: 10.1021/acs.jpcc.1c01789
|
30 |
ZHENG A M , ZHANG H L , LU X , et al. Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts[J]. J Phys Chem B, 2008, 112 (15): 4496- 4505.
doi: 10.1021/jp709739v
|
31 |
BRUS J , KOBERA L , SCHOEFBERGER W , et al. Structure of framework aluminum lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics[J]. Angew Chem Int Ed, 2015, 54 (2): 541- 545.
|
32 |
RAVI M , SUSHKEVICH V L , VAN BOKHOVEN J A . Towards a better understanding of Lewis acidic aluminium in zeolites[J]. Nat Mater, 2020, 19 (10): 1047- 1056.
doi: 10.1038/s41563-020-0751-3
|
33 |
WIPER P V , AMELSE J , MAFRA L . Multinuclear solid-state NMR characterization of the Brønsted/Lewis acid properties in the BP HAMS-1B (H-[B]-ZSM-5) borosilicate molecular sieve using adsorbed TMPO and TBPO probe molecules[J]. J Catal, 2014, 316, 240- 250.
doi: 10.1016/j.jcat.2014.05.017
|
34 |
ZHAO Q , CHEN W H , HUANG S J , et al. Discernment and quantification of internal and external acid sites on zeolites[J]. J Phys Chem B, 2002, 106 (17): 4462- 4469.
doi: 10.1021/jp015574k
|