[1] |
QI G D, YE X D, XU J, et al. Progress in NMR studies of carbohydrates conversion on zeolites[J]. Chem J Chinese Universities, 2021, 42(1): 148-164.
|
|
齐国栋, 叶晓栋, 徐君, 等. 分子筛上糖类催化转化的核磁共振研究[J]. 高等学校化学学报, 2021, 42(1): 148-164.
doi: 10.7503/cjcu20200500
|
[2] |
QI G D, WANG Q, XU J, et al. Solid-state NMR studies of internuclear correlations for characterizing catalytic materials[J]. Chem Soc Rev, 2021, 50(15): 8382-8399.
|
[3] |
XU J, WANG Q, LI S H, et al. Solid-state NMR in zeolite catalysis[M]. Springer, 2019.
|
[4] |
He H Y, Zou Y, Ma Z N, et al. In situ MAS NMR spectroscopy study on catalytic reaction mechanism of light alkanes[J]. Acta Phys-Chim Sin, 2004, 20(08S): 1024-1031.
|
|
贺鹤勇, 邹艳, 马卓娜, 等. 低碳烷烃催化反应机理的固体核磁共振研究[J]. 物理化学学报, 2004, 20(08S): 1024-1031.
|
[5] |
DENG T Y, HE X H, LIU H C. Insights into the active acid sites for isosorbide synthesis from renewable sorbitol and cellulose on solid acid catalysts[J]. Chem Res Chin Univ, 2022, 38(1): 257-264.
|
[6] |
ROMMENS K T, SAEYS M. Molecular views on Fischer-Tropsch synthesis[J]. Chem Rev, 2023, 123(9): 5798-5858.
|
[7] |
ZHANG W P, XU S T, HAN X W, et al. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach[J]. Chem Soc Rev, 2012, 41(1): 192-210.
doi: 10.1039/c1cs15009j
pmid: 21743940
|
[8] |
HUNGER M, WEITKAMP J. In situ IR, NMR, EPR, and UV/Vis spectroscopy: Tools for new insight into the mechanisms of heterogeneous catalysis[J]. Angew Chem Int Ed, 2001, 40(16): 2954-2971.
|
[9] |
GOGUEN P W, XU T, BARICH D H, et al. Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5[J]. J Am Chem Soc, 1998, 120(11): 2650-2651.
|
[10] |
ZHOU X, WANG C, CHU Y Y, et al. Mechanistic insight into ethanol dehydration over SAPO-34 Zeolite by solid-state NMR spectroscopy[J]. Chem Res Chin Univ, 2022, 38(1): 155-160.
|
[11] |
WANG X M, QI G D, XU J, et al. NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst[J]. Angew Chem Int Ed, 2012, 51(16): 3850-3853.
doi: 10.1002/anie.201108634
pmid: 22389151
|
[12] |
HUNGER M, HORVATH T. A new MAS NMR probe for in-situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions[J]. J Chem Soc, Chem Commun, 1995, (14): 1423-1424.
|
[13] |
ADRIAN CARPENTER T, KLINOWSKI J, TILAK D, et al. Sealed capsules for convenient acquisition of variable-temperature controlled-atmosphere magic-angle-spinning NMR spectra of solids[J]. J Magn Reson, 1986, 68(3): 561-563.
|
[14] |
HAW J F, GOGUEN P W, XU T, et al. In situ NMR investigations of heterogeneous catalysis with samples prepared under standard reaction conditions[J]. Angew Chem Int Ed, 1998, 37(7): 948-949.
doi: 10.1002/(SICI)1521-3773(19980420)37:7<948::AID-ANIE948>3.0.CO;2-L
pmid: 29711496
|
[15] |
HU J Z, HU M Y, ZHAO Z C, et al. Sealed rotors for in situ high temperature high pressure MAS NMR[J]. Chem Commun, 2015, 51(70): 13458-13461.
|
[16] |
ZHAO Z C, YAO X L, HOU G J. Reaction pathways of methanol reforming over Pt/α-MoC catalysts revealed by in situ high-pressure MAS NMR[J]. ACS Catalysis, 2023, 13(12): 7978-7986.
|
[17] |
IVANOVA I I, KOLYAGIN Y G, KASYANOV I A, et al. Time-resolved in situ MAS NMR monitoring of the nucleation and growth of zeolite BEA catalysts under hydrothermal conditions[J]. Angew Chem Int Ed, 2017, 56(48): 15344-15347.
|
[18] |
IVANOVA I I, ANDRIAKO E P. In situ MAS NMR at the service of catalysis by zeolites: From the unraveling catalytic mechanisms towards the elucidation of the mechanisms of synthesis and rational design of zeolite catalysts[J]. Microporous Mesoporous Mater, 2023, 358: 112363.
|
[19] |
WEHRLE B, AGUILAR-PARRILLA F, LIMBACH H-H. A novel is N chemical-shift NMR thermometer for magic angle spinning experiments[J]. J Magn Reson, 1990, 87(3): 584-591.
|
[20] |
CAMPBELL G C, CROSBY R C, HAW J F. 13C chemical shifts which obey the Curie law in CP/MAS NMR spectra. The first CP/MAS NMR chemical-shift thermometer[J]. J Magn Reson, 1986, 69(1): 191-195.
|
[21] |
KEMP T F, BALAKRISHNAN G, PIKE K J, et al. Thermometers for low temperature magic angle spinning NMR[J]. J Magn Reson, 2010, 204(1): 169-172.
doi: 10.1016/j.jmr.2010.02.018
pmid: 20227900
|
[22] |
TAKAHASHI T, KAWASHIMA H, SUGISAWA H, et al. 207Pb chemical shift thermometer at high temperature for magic angle spinning experiments[J]. Solid State Nucl Magn Reson, 1999, 15(2): 119-123.
pmid: 10670904
|
[23] |
THURBER K R, TYCKO R. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder[J]. J Magn Reson, 2009, 196(1): 84-87.
|
[24] |
PAN H, GERSTEIN B C. NMR of 31P in (VO)2P2O7 as an internal temperature standard in high-temperature NMR[J]. J Magn Reson, 1991, 92(3): 618-619.
|
[25] |
DE CLIPPEL F, DUSSELIER M, VAN ROMPAEY R, et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts[J]. J Am Chem Soc, 2012, 134(24): 10089-10101.
doi: 10.1021/ja301678w
pmid: 22550936
|
[26] |
CHO H J, CHANG C C, FAN W. Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst[J]. Green Chem, 2014, 16(7): 3428-3433.
|
[27] |
LI L, STROOBANTS C, LIN K F, et al. Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts[J]. Green Chem, 2011, 13(5): 1175-1181.
|
[28] |
QI G D, WANG Q, XU J, et al. Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy[J]. Commun Chem, 2018, 1(1): 22.
|
[29] |
WISHART D S, KNOX C, GUO A C, et al. HMDB: a knowledgebase for the human metabolome[J]. Nucleic Acids Res, 2008, 37(suppl_1): D603-D610.
|