[1] |
MANOILOV K Y, VERKHUSHA V V, SHCHERBAKOVA M D. A guide to the optogenetic regulation of endogenous molecules[J]. Nat Methods 2021, 18(9): 1027-1037.
doi: 10.1038/s41592-021-01240-1
pmid: 34446923
|
[2] |
BRECHUN K E, ARNDT K M. WOOLLEY G A. Strategies for the photo-control of endogenous protein activity[J]. Curr Opin Struct Biol, 2017, 45: 53-58.
|
[3] |
ZHANG F, WANG X, LIU H, et al. Recent advances and applications of semiconductor photocatalytic technology[J]. Appl Sci, 2019, 9(12): 2489.
|
[4] |
XIONG S, YIN X, WANG Q, et al. Photoacoustic spectroscopy gas detection technology research progress[J]. Appl Spectrosc, 2023, 78(2): 135-158.
|
[5] |
NOLTE D D. Coherent light scattering from cellular dynamics in living tissues[J]. Rep Prog Phys, 2024, 87(3): 036601.
|
[6] |
RAPP T L, DEFOREST C A. Targeting drug delivery with light: A highly focused approach[J]. Adv Drug Deliv Rev, 2021, 171: 94-107.
|
[7] |
SUN C L, WANG C, BOULATOV R. Applications of photoswitches in the storage of solar energy[J]. Chem Photo Chem, 2019, 3(6): 268-283.
|
[8] |
MILLS A, ROURKE O. In situ, simultaneous irradiation and monitoring of a photocatalyzed organic oxidation reaction in a TiO2-coated NMR tube[J]. J Org Chem, 2015, 80 (20): 10342-10345.
doi: 10.1021/acs.joc.5b01001
pmid: 26414339
|
[9] |
LIAO Y X, GENG F S, SHEN M, et al. Solid-state NMR study on sodium intercalation at low voltage window for Na3V2(PO4)3 as an anode[J]. Magn Reson Lett, 2024, 4(2): 100093.
|
[10] |
WANG H, TAO Z Q, JIANG G S, et al. In situ investigation of HdeA in bacterial outer membrane vesicles using NMR spectroscopy[J]. Chinese J Magn Reson, 2024, 41(1): 1-8.
|
|
王欢, 陶志清, 姜国胜, 等. HdeA在细菌外膜囊泡环境下的原位NMR研究[J]. 波谱学杂志, 2024, 41(1): 1-8.
doi: 10.11938/cjmr20233069
|
[11] |
JIANG Y, ZHAO M, PENG Z Q, et al. Progress in in-situ electrochemical nuclear magnetic resonance for battery research[J]. Magn Reson Lett, 2024, 4(2): 200099.
|
[12] |
BRAMHAM J E, GOLOVANOV A P. Sample illumination device facilitates in situ lightcoupled NMR spectroscopy without fibre optics[J]. Commun Chem, 2022, 5(1): 90.
|
[13] |
PAULULAT T, RABE M, BERDNIKOVA D, et al. Modification of an NMR probe for monitoring of photoreactions[J]. J Magn Reson, 2021, 327: 106990
|
[14] |
LIU W Q, SONG Y H, WANG X L, et al. In operando nuclear magnetic resonance spectroscopy study on photocatalytic methanol reforming[J]. Chinese J Magn Reson, 2019 36(3): 298-308.
|
|
刘文卿, 宋艳红, 王雪璐, 等. 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019 36(3): 298-308.
doi: 10.11938/cjmr20182680
|
[15] |
WANG R D, XU B B, SONG Y H, et al. Methanol-water interaction in photocatalytic methanol reforming-An operando NMR study[J]. Chinese J Magn Reson, 2021, 38(1): 43-57.
|
|
王睿迪, 徐贝贝, 宋艳红, 等. 原位核磁共振技术研究光催化甲醇重整过程中甲醇与水的相互作用[J]. 波谱学杂志, 2021, 38(1): 43-57.
doi: 10.11938/cjmr20202818
|
[16] |
YE M, YANG Y N, ZHANG R, et al. Effects of co-catalysts and wavelength of light on the products of photocatalytic methanol reforming: an operando NMR study[J]. Chinese J Magn Reson, 2019, 36(4): 490-501.
|
|
叶曼, 杨以宁, 张燃, 等. 原位核磁共振技术研究共催化剂类型以及光照波长对甲醇光催化重整产物的影响[J]. 波谱学杂志, 2019, 36(4): 490-501.
doi: 10.11938/cjmr20192727
|
[17] |
NIU X X, BAI Z J, YANG Y, et al. A quantitative study of photocatalytic reduction of Cr(VI) by Operando low-field NMR relaxometry[J]. Chinese J Magn Reson, 2021, 38(3): 403-413.
|
|
牛星星, 白志杰, 杨翼, 等. 原位低场核磁共振弛豫法定量监测光催化Cr (VI) 还原反应[J]. 波谱学杂志, 2021, 38(3): 403-413.
doi: 10.11938/cjmr20202815
|
[18] |
XU B B, ZHOU M, MAN Y, et al. Cooperative motion in water-methanol clusters controls the reaction rates of heterogeneous photocatalytic reactions[J]. J Am Chem Soc, 2021, 143: 10940-10947
|
[19] |
XU B B, ZHOU M, RAN Z, et al. Solvent water controls photocatalytic methanol reforming[J]. J Phys Chem Lett, 2020, 11: 3738-3744.
|
[20] |
WANG X L, LIU W Q, YanYan Y, et al. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions[J]. Nat Commun, 2016, 7: 11918.
doi: 10.1038/ncomms11918
pmid: 27311326
|
[21] |
OTOKIKO T, SHUJI K, SHIGEORI T. Cycloaddition of pyridinium methylides with electron-deficient olefins and silica-gel mediated elimination of pyridines from the cycloadducts: A new method of alkylation or hydroalkylidenation of olefins[J]. B Chem Soc Jpn, 1987, 60(4): 1489-1495.
|