[1] |
ZHANG Z, MENG X, CUI W, et al. NMR: from molecular mechanism to its application in medical care[J]. Med Chem, 2020, 16(8): 1089-1098.
|
[2] |
HUANG M, LI S Y, CHEN J B, et al. Progress of magnetic resonance fingerprinting technology and its clinical application[J]. Chinese J Magn Reson, 2023, 40(2): 207-219.
|
|
黄敏, 李思怡, 陈军波, 等. 磁共振指纹成像技术及临床应用的进展[J]. 波谱学杂志, 2023, 40(2): 207-219.
doi: 10.11938/cjmr20223034
|
[3] |
BARISON A, BISWAS R G, NING P, et al. Introducing comprehensive cultiphase NMR for the analysis of food: understanding the hydrothermal treatment of starch-based foods[J]. Food Chem, 2022, 397: 133800.
|
[4] |
NIU X G, JIN C W. Biomolecular dynamic properties probed by solution NMR[J]. Sci China Chem, 2020, 50(10): 1375-1383.
|
|
牛晓刚, 金长文. 利用核磁共振技术表征生物大分子的动态特性[J]. 中国科学:化学, 2020, 50(10): 1375-1383.
|
[5] |
ZHANG R, WANG W, GAO Y, et al. Sensitivity analysis of T2-T1 2D NMR measurement parameters in shale oil reservoirs[J]. Chinese J Magn Reson, 2023, 40(2): 122-135.
|
|
张融, 王伟, 高怡, 等. 页岩油储层T2-T1二维核磁共振测量参数敏感性分析[J]. 波谱学杂志, 2023, 40(2): 122-135.
doi: 10.11938/cjmr20223025
|
[6] |
WANG X R, JIANG G T, KEBREAB E, et al. 1H NMR-based metabolomics study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality[J]. Food Res Int, 2020, 133: 109126.
|
[7] |
李磊. 小型化核磁共振谱仪硬件系统的设计与实现[D]. 青岛: 中国石油大学(华东), 2019.
|
[8] |
徐勤. 数字化磁共振成像谱仪[D]. 上海: 华东师范大学, 2006.
|
[9] |
LIU Y, SHEN J, LI G Y. Integrated nuclear magnetic resonance spectrometer console based on USB bus[J]. Chinese J Magn Reson, 2007, 24(1): 35-41.
|
|
刘颖, 沈杰, 李鲠颖. 基于USB总线的一体化核磁共振谱仪控制台[J]. 波谱学杂志, 2007, 24(1): 35-41.
|
[10] |
雷都. 基于ARM的一体化核磁共振谱仪[D]. 上海: 华东师范大学, 2008.
|
[11] |
TANG W N, WANG W M, LIU W T, et al. A home-built digital optical MRI console using high-speed serial links[J]. Magn Reson Med, 2015, 74(2): 578-588.
doi: 10.1002/mrm.25403
pmid: 25105249
|
[12] |
TANG W N, SUN H Y, WANG W M. A digital receiver module with direct data acquisition for magnetic resonance imaging systems[J]. Rev Sci Instrum, 2012, 83(10): 104701.
|
[13] |
DAVID J A. A portable low-cost NMR spectrometer[D]. Cleveland: Case Western Reserve University, 2018.
|
[14] |
LIAO W S, XU J C, YAO S Q, et al. Phase coherence technology of digital MR console based on dual reference sources[J]. Chinese J Magn Reson, 2022, 39(3): 327-336.
|
|
廖文姗, 徐俊成, 姚守权, 等. 基于双参考源的数字磁共振控制台相位相干技术[J]. 波谱学杂志, 2022, 39(3): 327-336.
doi: 10.11938/cjmr20222980
|
[15] |
ZHOU J, ZHOU M X, LEI D, et al. The mechanism of data exchange in integrated nuclear magnetic resonance spectrometers[J]. Chinese J Magn Reson, 2009, 26(3): 343-350.
|
|
周娟, 周敏雄, 雷都, 等. 一体化核磁共振谱仪数据交换的实现机制[J]. 波谱学杂志, 2009, 26(3): 343-350.
|
[16] |
JI W B, QIAO Y, LEI D, et al. Development of a general-purpose hardware pulse sequence generator[J]. Chinese J Magn Reson, 2007, 24(3): 321-327.
|
|
季文彬, 乔勇, 雷都, 等. 通用硬件脉冲序列发生器的研制[J]. 波谱学杂志, 2007, 24(3): 321-327.
|
[17] |
吕兴龙. 变带宽磁共振接收机的FPGA实现[D]. 上海: 华东师范大学, 2023.
|