[1] |
CHEN H Y, ZHAO S L, LI X N, et al. B1 mapping on low-field permanent magnet MRI scanner[J]. Chinese J Magn Reson, 2018, 35(4): 498-504.
|
|
陈海燕, 赵世龙, 李晓南, 等. 低场永磁体磁共振射频场映像[J]. 波谱学杂志, 2018, 35(4): 498-504.
doi: 10.11938/cjmr20182661
|
[2] |
LUO J, LIU S P, YANG X, et al. Design of a 5 T non-magnetic magnetic resonance radio frequency power amplifier[J]. Chinese J Magn Reson, 2022, 39(2): 163-173.
|
|
骆俊, 刘盛平, 杨兴, 等. 一种无磁化的5 T磁共振射频功率放大器设计[J]. 波谱学杂志, 2022, 39(2): 163-173.
doi: 10.11938/cjmr20212958
|
[3] |
LIAO Z W, CHEN J F, YANG C S, et al. A Design scheme for 1H/31P dual-nuclear parallel MRI coil[J]. Chinese J Magn Reson, 2020, 37(3): 273-282.
|
|
廖志文, 陈俊飞, 杨春升, 等. 1H/31P双核并行磁共振成像线圈的研究与设计[J]. 波谱学杂志, 2020, 37(3): 273-282.
doi: 10.11938/cjmr20192737
|
[4] |
HOU S L, XIE H T, HOU X W, et al. Gradient coils in permanent magnet miniature magnetic resonance imagers and image quality[J]. Chinese J Magn Reson, 2012, 29(4): 508-520.
|
|
侯淑莲, 谢寰彤, 侯晓吻, 等. 永磁微型磁共振成像仪的梯度线圈与图像质量[J]. 波谱学杂志, 2012, 29(4): 508-520.
|
[5] |
FENZL M, BACKENS M, BODEA S, et al. Impact of cannabis use on brain metabolism using 31P and 1H magnetic resonance spectroscopy[J]. Neuroradiology, 2023, 65(11): 1631-1648.
|
[6] |
DEEN S S, ROONEY C, SHINOZAKI A, et al. Hyperpolarized carbon 13 MRI: clinical applications and future directions in oncology[J]. Radiol Imaging Cancer, 2023, 5(5): e230005.
|
[7] |
WANG G X, YANG H Y, LI J, et al. Overview and progress of X-nuclei magnetic resonance imaging in biomedical studies[J]. Magn Reson Lett, 2023, 3(4): 327-343.
|
[8] |
BHATIA A, LEE V K, QIAN Y, et al. Quantitative sodium (23Na) MRI in pediatric gliomas: initial experience[J]. Diagnostics (Basel), 2022, 12(5): 12-23.
|
[9] |
GORALSKI J L, CHUNG S H, CEPPE A S, et al. Dynamic perfluorinated gas MRI shows improved lung ventilation in people with cystic fibrosis after elexacaftor/tezacaftor/ivacaftor: an observational study[J]. J Clin Med, 2022, 11(20): 6160.
|
[10] |
BARANYAI Z, CARNIATO F, NUCERA A, et al. Defining the conditions for the development of the emerging class of Fe(III)-based MRI contrast agents[J]. Chem Sci, 2021, 12(33): 11138-11145.
|
[11] |
JIANG W Q, JIANG M, A R, et al. The principle of pH imaging with MR and its research progress on the formation mechanism and development of tumor acidic microenvironment[J]. Chin J Magn Reson Imaging, 2021, 12(2): 121-124.
|
|
姜炜琪, 姜萌, 阿荣, 等. 磁共振pH成像原理及其在肿瘤酸性微环境形成机制及其发展演变中的研究进展[J]. 磁共振成像, 2021, 12(2): 121-124.
|
[12] |
LIM H, THIND K, MARTINEZ-SANTIESTEBAN F M, et al. Construction and evaluation of a switch-tuned 13C-1H birdcage radiofrequency coil for imaging the metabolism of hyperpolarized 13C-enriched compounds[J]. J Magn Reson Imaging, 2014, 40(5): 1082-1090.
|
[13] |
BERNARDTIFFON, JOELMISPELTER, LHOSTE J-M, et al. A carbon-13 in viva double surface-coil NMR probe with efficient[J]. J Magn Reson, 1986, 68: 544-550.
|
[14] |
QIAO J G, WU H, ZHANG W G, et al. Progress in hyperpolarization 13C magnetic resonance imaging of glioma[J]. Int J of Med Radiol, 2022, 45(3): 293-297.
|
|
谯金果, 吴昊, 张伟国, 等. 脑胶质瘤超极化13C-MRI研究进展[J]. 国际医学放射学杂志, 2022, 45(3): 293-297.
|
[15] |
CAO P, ZHANG X, PARK I, et al. 1H-13C independently tuned radiofrequency surface coil applied for in vivo hyperpolarized MRI[J]. Magn Reson Med, 2016, 76(5): 1612-1620.
|
[16] |
HANSEN R B, SÁNCHEZ-HEREDIA J D, BØGH N, et al. Coil profile estimation strategies for parallel imaging with hyperpolarized 13C MRI[J]. Magn Reson Med, 2019, 82(6): 2104-2117.
|
[17] |
SANCHEZ-HEREDIA J D, OLIN R B, GRIST J T, et al. RF coil design for accurate parallel imaging on 13C MRSI using 23Na sensitivity profiles[J]. Magn Reson Med, 2022, 88(3): 1391-1405.
|
[18] |
WANG W, SANCHEZ-HEREDIA J D, OLIN R B, et al. A cryogenic 14-channel 13C receiver array for 3 T human head imaging[J]. Magn Reson Med, 2023, 89(3): 1265-1277.
|
[19] |
LUCHINAT E, BARBIERI L, CREMONINI M, et al. Protein in-cell NMR spectroscopy at 1.2 GHz[J]. J Biomol NMR, 2021, 75(2-3): 97-107.
|
[20] |
ZENG W, LIU G R, et al. Smoothed finite element methods (S-FEM): an overview and recent developments[J]. Arch Computat Methods Eng, 2018, 25(2): 397-435.
|
[21] |
LITTIN S, JIA F, AMREIN P, et al. Methods: of stream functions and thin wires: an intuitive approach to gradient coil design[J]. Front Phys, 2021, 9(3): 142-153.
|
[22] |
樊萌. 磁共振系统匀场线圈与梯度线圈设计研究[D]. 北京: 中国科学院大学, 2021.
|
[23] |
HIDALGO-TOBON S S. Theory of gradient coil design methods for magnetic resonance imaging[J]. Concepts Magn Reson A, 2010, 36A(4): 223-242.
|
[24] |
WANG Y H, WANG W M, LIU H, et al. Gradient coil design with enhanced shielding constraint for a cryogen-free superconducting MRI system[J]. Magn Reson Lett, 2024, 4(1): 100086.
|
[25] |
PEEREN G N. Stream function approach for determining optimal surface currents[J]. J Comp Phys, 2003, 191(1): 305-321.
|
[26] |
BOT R I, CSETNEK E R, LASZLO S C, et al. Tikhonov regularization of a second order dynamical system with Hessian driven damping[J]. Math Program, 2021, 189(1-2): 151-186.
doi: 10.1007/s10107-020-01528-8
pmid: 34720194
|
[27] |
章萌. 1H/31P/23Na三核磁共振成像线圈的研究与设计[D]. 北京: 中国科学院大学, 2021.
|
[28] |
NESPOR D, BARTUSEK K, DOKOUPIL Z, et al. Comparing saddle, slotted-tube and parallel-plate coils for magnetic resonance imaging[J]. Meas Sci Rev, 2014, 14(3): 171-176.
|
[29] |
GINSBERG D M, MELCHNER M J. Optimum geometry of saddle shaped coils for generating a uniform magnetic field[J]. Rev Sci Instrum, 1970, 41(1): 122-123.
|
[30] |
ANGELIDIS P, VASSILIADIS K, SERGIADIS G D, et al. Lowest mutual coupling between closely spaced loop antennas[J]. IEEE T Antenn Propag, 1991, 39(7): 949-953.
|
[31] |
WU D, KANG L Y, LI H T, et al. Developing an AI-empowered head-only ultra-high-performance gradient MRI system for high spatiotemporal neuroimaging[J]. NeuroImage, 2024, 290(3): 120553.
|
[32] |
BRUKER. Bio_Spec 94_30_CN[OL]. [2019]. https://www.bruker.com/en/products-and-solutions/preclinical-imaging/mri/biospec/biospec-70-30-and-94-30.html.
|