[1] |
WU Y Y. Research progress of wood science and technology[J]. Journal of Central South University of Forestry & Technology, 2021, 41(1): 1-28.
|
|
吴义强. 木材科学与技术研究新进展[J]. 中南林业科技大学学报, 2021, 41(1): 1-28.
|
[2] |
CHEN C, KUANG Y, ZHU S, et al. Structure-property-function relationships of natural and engineered wood[J]. Nat Rev Mater, 2020, 5(9): 642-666.
|
[3] |
XIAO L Z, LUO S H, LONG Z H. The development history and prospects of well site nuclear magnetic resonance technology and its applications[J]. Petroleum Drilling Technology, 2023, 51(4): 1-9.
|
|
肖立志, 罗嗣慧, 龙志豪. 井场核磁共振技术及其应用的发展历程与展望[J]. 石油钻探技术, 2023, 51(4): 1-9.
|
[4] |
LI Y, XIAO L Z, SUN H F. The influencing factors of nuclear magnetic resonance logging TDA for identifying oil and gas[J]. Chinese J Magn Reson, 2012, 29(1): 21-31.
|
|
李洋, 肖立志, 孙华峰. 核磁共振测井TDA识别油气的影响因素[J]. 波谱学杂志, 2012, 29(1): 21-31.
|
[5] |
WANG Z L, ZHANG R, ZHANG N, et al. A high-precision processing method for two-dimensional nuclear magnetic resonance logging data based on component compensation[J]. Chinese J Magn Reson, 2022, 39(2): 174-183.
|
|
王振林, 张融, 张妮, 等. 一种基于组分补偿的二维核磁共振测井数据高精度处理方法[J]. 波谱学杂志, 2022, 39(2): 174-183.
doi: 10.11938/cjmr20212964
|
[6] |
LIANG C, JIA Z, XIAO L, et al. A potential NMR-based wettability index using free induction decay for rocks[J]. Magn Reson Lett, 2023, 3(3): 266-275.
|
[7] |
MORAES T B, COLNAGO L A. Noninvasive analyses of food products using low-field time-domain NMR: a review of relaxometry methods[J]. Brazilian J Phys, 2022, 52(2): 43.
|
[8] |
NIU X X, BAI Z J, YANG Y, et al. Quantitative monitoring of photocatalytic Cr(VI) reduction reaction using in-situ low field nuclear magnetic resonance relaxation method[J]. Chinese J Magn Reson, 2021, 38(3): 403-413.
|
|
牛星星, 白志杰, 杨翼, 等. 原位低场核磁共振弛豫法定量监测光催化Cr(VI)还原反应[J]. 波谱学杂志, 2021, 38(3): 403-413.
doi: 10.11938/cjmr20202815
|
[9] |
ROBINSON N, D’AGOSTINO C, JOHNS M L. Functional group resolved NMR relaxation of 3-carbon adsorbates in mesoporous alumina[J]. Magn Reson Lett, 2023, 3(3): 248-255.
|
[10] |
LI J, MA E. Characterization of water in wood by time-domain nuclear magnetic resonance spectroscopy (TD-NMR): a review[J]. Forests, 2021, 12(7): 886.
|
[11] |
GAO Y L, LI X Y, LEI P, et al. Using TD-NMR technology to study the moisture distribution of poplar during high-temperature drying process[J]. Chinese J Magn Reson, 2016, 33(3): 479-490.
|
|
高玉磊, 李新宇, 雷鹏, 等. 利用TD-NMR技术研究杨木高温干燥过程水分分布[J]. 波谱学杂志, 2016, 33(3): 479-490.
doi: 10.11938/cjmr20160313
|
[12] |
ZHOU F D, GAO X, CAI J B, et al. Using low-temperature NMR technology to determine the fiber saturation point of wood and its heat treated wood[J]. Chinese J Magn Reson, 2017, 34(1): 108-114.
|
|
周凡丁, 高鑫, 蔡家斌, 等. 利用低温NMR技术测定木材及其热处理材纤维饱和点[J]. 波谱学杂志, 2017, 34(1): 108-114.
doi: 10.11938/cjmr20170113
|
[13] |
MA E N, WANG W, LI X, et al. Changes of water state during wood drying based on LFNMR[J]. Sci Silvae Sin, 2017, 53(6): 111-117.
|
|
马尔妮, 王望, 李想, 等. 基于LFNMR的木材干燥过程中水分状态变化[J]. 林业科学, 2017, 53(6): 111-117.
|
[14] |
ZHANG M H, LI X Y, ZHOU Y J, et al. Study on changes of water state in wood drying process using time-domain nuclear magnetic resonance[J]. Sci Silvae Sin, 2014, 50(12): 109-113.
|
|
张明辉, 李新宇, 周云洁, 等. 利用时域核磁共振研究木材干燥过程水分状态变化[J]. 林业科学, 2014, 50(12): 109-113.
|
[15] |
CASANOVA F, PERLO J, BLÜMICH B. Single-sided NMR[M]. Springer Berlin Heidelberg, 2011.
|
[16] |
CASIERI C, SENNI L, ROMAGNOLI M, et al. Determination of moisture fraction in wood by mobile NMR device[J]. J Magn Reson, 2004, 171(2): 364-372.
pmid: 15546765
|
[17] |
SENNI L, CASIERI C, BOVINO A, et al. A portable NMR sensor for moisture monitoring of wooden works of art, particularly of paintings on wood[J]. Wood Sci Technol, 2009, 43: 167-180.
|
[18] |
SENNI L, CAPONERO M, CASIERI C, et al. Moisture content and strain relation in wood by Bragg grating sensor and unilateral NMR[J]. Wood Sci Technol, 2010, 44: 165-175.
|
[19] |
DVINSKIKH S V, FURÓ I, SANDBERG D, et al. Moisture content profiles and uptake kinetics in wood cladding materials evaluated by a portable nuclear magnetic resonance spectrometer[J]. Wood Mater Sci Eng, 2011, 6(3): 119-127.
|
[20] |
JOHANSSON J, BLOM Å, DVINSKIKH S. NMR-measurements for determination of local moisture content of coated wood[J]. J Coat Technol Res, 2013, 10: 601-607.
|
[21] |
闫越. 利用单边核磁共振研究木材的分层吸湿性[D]. 呼和浩特: 内蒙古农业大学, 2015.
|
[22] |
YU D J, GUO P, WU J M, et al. Design of single-side NMR sensor for wood moisture detection[J]. Chinese J Magn Reson, 2017, 34(4): 508-518.
|
|
余登洁, 郭盼, 吴嘉敏, 等. 用于木材水分检测的单边核磁共振传感器设计[J]. 波谱学杂志, 2017, 34(4): 508-518.
doi: 10.11938/cjmr20172561
|
[23] |
STAGNO V, MAILHIOT S, CAPUANI S, et al. Testing 1D and 2D single-sided NMR on Roman age waterlogged woods[J]. J Cult Herit, 2021, 50: 95-105.
|
[24] |
STAGNO V, CAPUANI S. Decay of a Roman age pine wood studied by micro magnetic resonance imaging, diffusion nuclear magnetic resonance and portable nuclear magnetic resonance[J]. Acta IMEKO, 2022, 11(1): 10.
|
[25] |
VENKATARAMANAN L, SONG Y Q, HURLIMANN M D. Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[J]. IEEE T Signal Proces, 2002, 50(5): 1017-1026.
|
[26] |
BAIAS M, BLÜMICH B. Nondestructive testing of objects from cultural heritage with NMR. In Webb G., Modern Magnetic Resonance[M]// Webb G. Modern Magnetic Resonance. Cham: Springer, 2018: 293-304.
|
[27] |
TELKKI V V, ZHIVONITKO V V. Ultrafast NMR diffusion and relaxation studies[J]. Annu Rep NMR Spectro, 2019, 97: 83-119.
|
[28] |
CARR H Y, PURCELL E M. Effects of diffusion on free precession in nuclear magnetic resonance experiments[J]. Phys Rev, 1954, 94(3): 630-638.
|
[29] |
GAO X, CAI J B, JIN J W, et al. Determination of water content and pore size distribution of wood swelling cell wall by nuclear magnetic resonance[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2017, 41(2): 150-156.
|
|
高鑫, 蔡家斌, 金菊婉, 等. 利用核磁共振测定木材润胀细胞壁的水分含量与孔径分布[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 150-156.
doi: 10.3969/j.issn.1000-2006.2017.02.022
|
[30] |
TELKKI V V, YLINIEMI M, JOKISAARI J. Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions[J]. Holzforschung, 2013, 67(3): 291-300.
|
[31] |
ARAUJO C D, MACKAY A L, Hailey J R T, et al. Proton magnetic resonance techniques for characterization of water in wood: application to white spruce[J]. Wood Sci Technol, 1992, 26: 101-113.
|
[32] |
MERELA M, OVEN P, SERŠA I, et al. A single point NMR method for an instantaneous determination of the moisture content of wood[J]. Holzforschung, 2009, 63(3): 348-351.
|
[33] |
LI X, ZHAO Z. Time domain-NMR studies of average pore size of wood cell walls during drying and moisture adsorption[J]. Wood Sci Technol, 2020, 54(5): 1241-1251.
|
[34] |
周云洁. 基于时域核磁共振技术的木材孔径分布研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
|
[35] |
PING L J, WANG X M, YAN Y, et al. Study on unsteady water diffusion and drying energy consumption of Pinus camphor wood during high temperature drying[J]. China Forest Products Industry, 2018, 45(9): 28-32+51.
|
|
平立娟, 王喜明, 颜燕, 等. 樟子松木材高温干燥过程中水分的非稳态扩散和干燥能耗的研究[J]. 林产工业, 2018, 45(9): 28-32+51.
|
[36] |
LIU L B. Water movement in wood during drying[J]. Heilongjiang Science and Technology Information, 2013 (27): 264.
|
|
刘鲁滨. 干燥过程中木材内水分的移动[J]. 黑龙江科技信息, 2013(27): 264.
|
[37] |
SIAU J F. Transport processes in wood[M]. Springer Science & Business Media, 2012.
|
[38] |
KULASINSKI K, GUYER R, DEROME D, et al. Water diffusion in amorphous hydrophilic systems: a stop and go process[J]. Langmuir, 2015, 31(39): 10843-10849.
doi: 10.1021/acs.langmuir.5b03122
pmid: 26390260
|
[39] |
XU H L. Activation of adsorbed water in wood[J]. Journal of Forest and Environment, 1988, 8(1): 95-101.
|
|
许洪林. 木材中吸附水的活化[J]. 福建林学院学报, 1988, 8(1): 95-101.
|
[40] |
马尔妮, 赵广杰. 木材物理学专论[M]. 北京: 中国林业出版社, 2012.
|