[1] |
HUO L, HU X X, XIAO Q, et al. Automatic segmentation of breast and fibroglandular tissues in DCE-MR images based on nnU-Net[J]. Chinese J Magn Reson, 2021, 38(3): 367-380.
|
|
霍璐, 胡晓欣, 肖勤, 等. 基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割[J]. 波谱学杂志, 2021, 38(3): 367-380.
doi: 10.11938/cjmr20212883
|
[2] |
YAN S J, HAN Y S, TANG G Y. An improved level set algorithm for prostate region segmentation[J]. Chinese J Magn Reson, 2021, 38(3): 356-366.
|
|
闫士举, 韩勇森, 汤光宇. 一种用于前列腺区域分割的改进水平集算法[J]. 波谱学杂志, 2021, 38(3): 356-366.
doi: 10.11938/cjmr20212885
|
[3] |
WANG M, LI D. An automatic segmentation method for lung tumor based on improved region growing algorithm[J]. Diagnostics, 2022, 12(12): 2971.
|
[4] |
SULTANA F, SUFIAN A, DUTTA P. Evolution of image segmentation using deep convolutional neural network: A survey[J]. Knowl Based Syst, 2020, 201: 106062.
|
[5] |
JHA D, RIEGLER M A, JOHANSEN D, et al. Doubleu-net: A deep convolutional neural network for medical image segmentation[C]// 33rd International symposium on computer-based medical systems (CBMS). IEEE, 2020: 558-564.
|
[6] |
DOLZ J, GOPINATH K, YUAN J, et al. HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation[J]. IEEE T Med Imaging, 2018, 38(5): 1116-1126.
|
[7] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18 th International Conference, Munich, Germany, Proceedings, Part III 18. Springer International Publishing, 2015: 234-241.
|
[8] |
CAI J, LU L, XING F, et al. Pancreas segmentation in CT and MRI images via domain specific network designing and recurrent neural contextual learning[J]. ArXiv: 1803.11303, 2018.
|
[9] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: Learning where to look for the pancreas[J]. ArXiv: 1804.03999, 2018.
|
[10] |
WANG Y, GONG G, KONG D, et al. Pancreas segmentation using a dual-input V-mesh network[J]. Med Image Anal, 2021, 69: 101958.
|
[11] |
XUE J, HE K, NIE D, et al. Cascaded multitask 3-D fully convolutional networks for pancreas segmentation[J]. IEEE Trans Cybern, 2019, 51(4): 2153-2165.
|
[12] |
ASATURYAN H, THOMAS E L, FITZPATRICK J, et al. Advancing pancreas segmentation in multi-protocol mri volumes using hausdorff-sine loss function[C]// Machine Learning in Medical Imaging:10th International Workshop, 2019: 27-35.
|
[13] |
PROIETTO S F, BELLITTO G, IRMAKCI I, et al. Hierarchical 3D feature learning forpancreas segmentation[C]// Machine Learning in Medical Imaging: 12th International Workshop, 2021: 238-247.
|
[14] |
BI X L, LU M, XIAO B, et al. Pancreas segmentation based on dual-decoding U-Net[J]. J Softw, 2022, 33(5): 1947-1958.
|
|
毕秀丽, 陆猛, 肖斌, 等. 基于双解码U型卷积神经网络的胰腺分割[J]. 软件学报, 2022, 33(5): 1947-1958.
|
[15] |
LI Y, ZHANG X, CHEN D. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 1091-1100.
|
[16] |
LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. ArXiv: 1805.10180, 2018.
|
[17] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
|
[18] |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans Med Imaging, 2019, 39(6): 1856-1867.
|
[19] |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. ArXiv: 1511.07122, 2015.
|
[20] |
WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 2018: 1451-1460.
|
[21] |
WANG Y, ZHANG J, CUI H, et al. View adaptive learning for pancreas segmentation[J]. Biomed Signal Process Control, 2021, 66: 102347.
|
[22] |
ZHANG J, XIE Y, WANG Y, et al. Inter-slice context residual learning for 3D medical image segmentation[J]. IEEE Trans Med Imaging, 2020, 40(2): 661-672.
|
[23] |
ROTH H R, LU L, LAY N, et al. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation[J]. Med Image Anal, 2018, 45: 94-107.
doi: S1361-8415(18)30021-5
pmid: 29427897
|
[24] |
CAI J, LU L, XIE Y, et al. Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function[J]. ArXiv: 1707.04912, 2017.
|
[25] |
YU Q, XIE L, WANG Y, et al. Recurrent saliency transformation network: Incorporating multi-stage visual cues for small organ segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8280-8289.
|
[26] |
CHEN J, LU Y, YU Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[J]. ArXiv: 2102.04306, 2021.
|
[27] |
WANG H Z, ZHAO D, YANG L Q, et al. An approach for training data enrichment and batch labeling in AI+MRI aided diagnosis[J]. Chinese J Magn Reson, 2018, 35(4): 447-456.
|
|
汪红志, 赵地, 杨丽琴, 等. 基于AI+MRI的影像诊断的样本增广与批量标注方法[J]. 波谱学杂志, 2018, 35(4): 447-456.
doi: 10.11938/cjmr20182658
|