波谱学杂志 ›› 2024, Vol. 41 ›› Issue (2): 139-150.doi: 10.11938/cjmr20233081

• 研究论文 • 上一篇    下一篇

基于卷积神经网络的重度抑郁症患者大脑年龄评估

章浩伟, 汪郧城, 刘颖*()   

  1. 上海理工大学,健康科学与工程学院,上海 200093
  • 收稿日期:2023-09-08 出版日期:2024-06-05 在线发表日期:2023-11-22
  • 通讯作者: *Tel: 18602168660, E-mail: ling2431@163.com.
  • 基金资助:
    上海介入医疗器械工程技术研究中心(18DZ2250900)

Brain Age Assessment of Patients with Major Depressive Disorder Based on Convolutional Neural Network

ZHANG Haowei, WANG Yuncheng, LIU Ying*()   

  1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2023-09-08 Published:2024-06-05 Online:2023-11-22
  • Contact: *Tel: 18602168660, E-mail: ling2431@163.com.

摘要:

大脑年龄已成为神经退行性疾病诊断和机理研究的重要分析对象. 重度抑郁症是否会增加患者的大脑年龄,尚未得到一致的结论,且该方向的研究在中国人口内开展较少. 本文使用从中国25家医院收集的REST-meta-MDD数据集,构建基于高分辨率T1-加权3D大脑结构磁共振图像的卷积神经网络模型,用于预测患者的大脑年龄,计算与实际年龄的差异. 最终结果的平均绝对误差和相关系数为3.16和0.93,与健康组对比,重度抑郁症患者的平均大脑年龄增加了3.94年,进一步确认了重度抑郁症会加速大脑衰老,且患病程度与患者的性别、年龄和受教育程度相关. 对比传统机器学习算法,该模型取得结果的平均绝对误差更小,相关系数更高.

关键词: 大脑年龄, 重度抑郁症, 卷积神经网络, 大脑衰老

Abstract:

Brain age has become an important analysis object in the diagnosis and mechanism research of neurodegenerative diseases. There is no consistent conclusion on whether major depression increases the brain age of patients, and few studies in this direction have been conducted in the Chinese population. In this paper, a REST-meta-MDD (resting-state functional magnetic resonance imaging dataset of major depressive disorder) dataset collected from 25 hospitals in China was used to construct a convolutional neural network model based on high-resolution T1-weighted three-dimensional magnetic resonance images of brain structures to predict the brain age of patients and calculate the difference from the actual age. The mean absolute error and correlation coefficients of the final results were 3.16 and 0.93, and the mean brain age of the patients with major depression increased by 3.94 years compared with the healthy group, further confirming that major depression accelerates brain aging, and the severity of the disease is related to the gender, age, and education of the patients. Compared with the traditional machine learning algorithms, the average absolute error of the results obtained by this model is smaller and the correlation coefficient is higher.

Key words: brain age, major depression, convolutional neural networks, brain aging

中图分类号: