波谱学杂志 ›› 2024, Vol. 41 ›› Issue (4): 454-468.doi: 10.11938/cjmr20243110

• 研究论文 • 上一篇    下一篇

用于超快时空编码MRI的Transformer超分辨率重建算法研究

宁欣宙1, 黄臻1, 陈西曲1, 刘鑫杰2,3, 陈罡2,3, 张志2,3, 鲍庆嘉2,3,*(), 刘朝阳2,3,4,#()   

  1. 1.武汉轻工大学 电气与电子工程学院,湖北 武汉 430023
    2.波谱与原子分子物理国家重点实验室,武汉磁共振中心(中国科学院精密测量科学与技术创新研究院),湖北 武汉 430071
    3.中国科学院大学,北京 100049
    4.湖北光谷实验室,湖北 武汉 430074
  • 收稿日期:2024-04-16 出版日期:2024-12-05 在线发表日期:2024-05-16
  • 通讯作者: * Tel: 027-87199686, E-mail: qingjia.bao@apm.ac.cn;# Tel: 027-87198790, E-mail: chyliu@apm.ac.cn.
  • 基金资助:
    国家重点研发计划(2023YFE0113300);国家重点研发计划(2022YFF0707000);国家自然科学基金项目(22327901);中国科学院B类战略性先导科技专项(XDB0540300);湖北省科技创新人才及服务专项(2023EHA003);中国科学院磁共振技术联盟科研仪器设备研制项目(2021GZL001);中国科学院精密测量科学与技术创新研究院交叉培养项目(S21S4101);中国科学院科研仪器开发项目(YJKYYQ 20190032)

Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging

NING Xinzhou1, HUANG Zhen1, CHEN Xiqu1, LIU Xinjie2,3, CHEN Gang2,3, ZHANG Zhi2,3, BAO Qingjia2,3,*(), LIU Chaoyang2,3,4,#()   

  1. 1. School of Electrical & Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China
    2. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan (Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences), Wuhan 430071, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. Optics Valley Laboratory, Wuhan 430074, China
  • Received:2024-04-16 Published:2024-12-05 Online:2024-05-16
  • Contact: * Tel: 027-87199686, E-mail: qingjia.bao@apm.ac.cn;# Tel: 027-87198790, E-mail: chyliu@apm.ac.cn.

摘要:

时空编码(SPEN)磁共振成像(MRI)是一种超快MRI技术,通过该技术采集获得的原始图像空间分辨率较低,需要基于序列物理原理进行超分辨率重建以提高其原始图像的分辨率,而现有的基于深度学习SPEN超分辨率重建算法在提取图像像素长距离依赖关系上的能力有限.为了解决此问题,本文提出了一种基于Transformer的SPEN MRI超分辨率重建算法.该算法采用编码器-解码器结构,并引入Transformer模块以提取特征图的局部上下文信息和长距离依赖关系.实验结果表明,本文所提的重建算法可以在不增加额外采样点的情况下从SPEN低分辨率图像中重建出高空间分辨率、无混叠伪影的超分辨率图像.与现有的超分辨率算法相比,本文提出的算法在临床前以及临床数据集上都取得了更好的重建效果.

关键词: 超快磁共振成像, 时空编码, 深度学习, 超分辨率, 图像重建

Abstract:

Spatio-temporal encoding (SPEN) magnetic resonance imaging (MRI) is an ultrafast MRI technique. However, resolution of the original image acquired with SPEN is relatively low, requiring super-resolution reconstruction based on sequence physics principles to improve spatial resolution. As the existing SPEN super-resolution reconstruction algorithms based on deep learning have confined abilities to capture long-range dependencies, this paper proposes a transformer-based SPEN MRI super-resolution reconstruction algorithm. An encoder-decoder structure is adopted, and a transformer module is introduced to extract local context information and long-range dependencies of feature maps. Experimental results show that the proposed reconstruction method can reconstruct a super-resolution image with high spatial resolution and no aliasing artifacts from the low-resolution SPEN image without adding additional sampling points. Compared to the existing super-resolution methods, the proposed method achieves better results on both clinical and preclinical datasets.

Key words: ultrafast MRI, spatio-temporal encoding(SPEN), deep learning, super-resolution, image reconstruction

中图分类号: