[1] |
EMAM M M, HOUSSEIN E H, GHONIEM R M. A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images[J]. Comput Biol Med, 2023, 152: 106404.
|
[2] |
WALTER S S, FRITZ B, KIJOWSKI R, et al. 2D versus 3D MRI of osteoarthritis in clinical practice and research[J]. Skeletal Radiol, 2023, 52(11): 2211-2224.
doi: 10.1007/s00256-023-04309-4
pmid: 36907953
|
[3] |
TSAO J. Ultrafast imaging: principles, pitfalls, solutions, and applications[J]. J Magn Reson Imaging, 2010, 32(2): 252-266.
doi: 10.1002/jmri.22239
pmid: 20677249
|
[4] |
GIL R, FERNANDES F F, SHEMESH N. Neuroplasticity-driven timing modulations revealed by ultrafast functional magnetic resonance imaging[J]. NeuroImage, 2021, 225: 117446.
|
[5] |
HIRSCH F W, FRAHM J, SORGE I, et al. Real-time magnetic resonance imaging in pediatric radiology—new approach to movement and moving children[J]. Pediatr Radiol, 2021, 51: 840-846.
|
[6] |
MILON A, FLAMENT V, GUENICHE Y, et al. How to optimize breast MRI protocol? The value of combined analysis of ultrafast and diffusion-weighted MRI sequences[J]. Diagn Interv Imaging, 2023, 104(6): 284-291.
|
[7] |
LIAO C, CAO X, CHO J, et al. Highly efficient MRI through multi-shot echo planar imaging[C]// Wavelets and Sparsity XVIII, 2019, 11138: 353-365.
|
[8] |
DUONG S T, PHUNG S L, BOUZERDOUM A, et al. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images[J]. Magn Reson Imaging, 2020, 71: 1-10.
doi: S0730-725X(19)30732-5
pmid: 32407764
|
[9] |
SHROT Y, FRYDMAN L. Spatially encoded NMR and the acquisition of 2D magnetic resonance images within a single scan[J]. J Magn Reson, 2005, 172(2): 179-190.
pmid: 15649744
|
[10] |
CAI S H, CAI C B, CHEN Z. Spatiotemporally encoded nuclear magnetic resonance and its applications[J]. J Xiamen University(Natural Science), 2021, 60(3): 542-554.
|
|
蔡淑惠, 蔡聪波, 陈忠. 时空编码核磁共振方法及其应用[J]. 厦门大学学报(自然科学版), 2021, 60(3): 542-554.
|
[11] |
TAL A, FRYDMAN L. Spatial encoding and the single-scan acquisition of high definition MR images in inhomogeneous fields[J]. J Magn Reson, 2006, 182(2): 179-194.
pmid: 16843690
|
[12] |
TAL A, FRYDMAN L. Single-scan multidimensional magnetic resonance[J]. Prog Nucl Magn Reson Spectrosc, 2010, 57(3): 241-292.
|
[13] |
BEN-ELIEZER N, IRANI M, FRYDMAN L. Super-resolved spatially encoded single-scan 2D MRI[J]. Magn Reson Med, 2010, 63(6): 1594-1600.
|
[14] |
CHEN Y, LI J, QU X, et al. Partial Fourier transform reconstruction for single-shot MRI with linear frequency-swept excitation[J]. Magn Reson Med, 2013, 69(5): 1326-1336.
doi: 10.1002/mrm.24366
pmid: 22706702
|
[15] |
CAI C, DONG J, CAI S, et al. An efficient de-convolution reconstruction method for spatiotemporal-encoding single-scan 2D MRI[J]. J Magn Reson, 2013, 228: 136-147.
doi: 10.1016/j.jmr.2012.12.020
pmid: 23433507
|
[16] |
CHEN L, LI J, ZHANG M, et al. Super-resolved enhancing and edge deghosting (SEED) for spatiotemporally encoded single-shot MRI[J]. Med Image Anal, 2015, 23(1): 1-14.
doi: 10.1016/j.media.2015.03.004
pmid: 25910683
|
[17] |
ZHONG S, CHEN M, WEI X, et al. Understanding aliasing effects and their removal in SPEN MRI: A k-space perspective[J]. Magn Reson Med, 2023, 90(1): 166-176.
doi: 10.1002/mrm.29638
pmid: 36961093
|
[18] |
LI Y J, YANG X Y, YANG X M. Magnetic resonance image reconstruction of multi-scale residual unet fused with attention mechanism[J]. Chinese J Magn Reson, 2023, 40(3):307-319.
|
|
李奕洁, 杨馨雨, 杨晓梅. 融合注意力机制的多尺度残差Unet的磁共振图像重建[J]. 波谱学杂志, 2023, 40(3): 307-319.
|
[19] |
LU Q Q, LIAN Z F, LI J L, et al. Magnetic resonance R2* parameter mapping of liver based on self-supervised deep neural network[J]. Chinese J Magn Reson, 2023, 40(3):258-269.
|
|
陆琪琪, 连梓锋, 李嘉龙. 等. 基于自监督网络的肝脏磁共振R2*参数图像重建[J]. 波谱学杂志, 2023, 40(3): 258-269.
|
[20] |
DE LEEUW DEN BOUTER M L, IPPOLITO G, O’REILLY T P, et al. Deep learning-based single image super-resolution for low-field MR brain images[J]. Sci Rep, 2022, 12(1): 6362.
doi: 10.1038/s41598-022-10298-6
pmid: 35430586
|
[21] |
SONG L, WANG Q, LIU T, et al. Deep robust residual network for super-resolution of 2D fetal brain MRI[J]. Sci Rep, 2022, 12(1): 406.
doi: 10.1038/s41598-021-03979-1
pmid: 35013383
|
[22] |
XIANG P C, CAI C B, WANG J C, et al. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network>[J]. Acta Phys Sin, 2022, 71(5):363-371.
|
|
向鹏程, 蔡聪波, 王杰超. 等. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法[J]. 物理学报, 2022, 71(5): 363-371.
|
[23] |
CHEN X, WANG W, HUANG J, et al. Ultrafast water-fat separation using deep learning-based single-shot MRI[J]. Magn Reson Med, 2022, 87(6): 2811-2825.
|
[24] |
CHOI S R, LEE M. Transformer architecture and attention mechanisms in genome data analysis: a comprehensive review[J]. Biology, 2023, 12(7): 1033.
|
[25] |
RAHALI A, AKHLOUFI M A. End-to-end transformer-based models in textual-based NLP[J]. AI, 2023, 4(1): 54-110.
|
[26] |
YIN Y, TANG Z, WENG H. Application of visual transformer in renal image analysis[J]. BioMed Eng OnLine, 2024, 23(1): 27.
doi: 10.1186/s12938-024-01209-z
pmid: 38439100
|
[27] |
ZU B, CAO T, LI Y, et al. SwinT-SRNet: Swin transformer with image super-resolution reconstruction network for pollen images classification[J]. Eng Appl Artif Intell, 2024, 133: 108041.
|
[28] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]// International Conference on Learning Representations, 2021.
|
[29] |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// IEEE/CVF International Conference on Computer Vision, 2021: 9992-10002.
|
[30] |
CHEN H, WANG Y, GUO T, et al. Pre-trained image processing transformer[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12294-12305.
|
[31] |
LIANG J, CAO J, SUN G, et al. SwinIR: Image restoration using swin transformer[C]// IEEE/CVF International Conference on Computer Vision Workshops, 2021: 833-1844.
|
[32] |
ZAMIR S W, ARORA A, KHAN S, et al. Restormer: Efficient transformer for high-resolution image restoration[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5718-5729.
|
[33] |
WANG Z, CUN X, BAO J, et al. Uformer: A general u-shaped transformer for image restoration[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 17662-17672.
|
[34] |
SCHMIDT R, SEGINER A, FRYDMAN L. Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI[J]. Magn Reson Med, 2016, 75(5): 1935-1948.
doi: 10.1002/mrm.25742
pmid: 26108165
|
[35] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Neural Information Processing Systems, 2017: 6000-6010.
|
[36] |
WU H, XIAO B, CODELLA N, et al. Cvt: Introducing convolutions to vision transformers[C]// IEEE/CVF International Conference on Computer Vision, 2021: 22-31.
|
[37] |
YUAN K, GUO S, LIU Z, et al. Incorporating convolution designs into visual transformers[C]// IEEE/CVF International Conference on Computer Vision, 2021: 559-568.
|
[38] |
VAN ESSEN D C, SMITH S M, BARCH D M, et al. The WU-Minn human connectome project: an overview[J]. NeuroImage, 2013, 80: 62-79.
doi: 10.1016/j.neuroimage.2013.05.041
pmid: 23684880
|