[1] |
HU S S, GAO R L, LIU L S, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209-220.
|
|
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220.
|
[2] |
HUANG X Q, ZHAO L L, CHEN L Y, et al. Accelerated cardiac CINE imaging with CAIPIRINHA and partial parallel acquisition[J]. Chinese J Magn Reson, 2017, 34(3): 283-293.
|
|
黄小倩, 赵乐乐, 陈利勇, 等. 基于同时多层激发和并行成像的心脏磁共振电影成像[J]. 波谱学杂志, 2017, 34(3): 283-293
|
[3] |
SU X Y, WANG L J, NIE S D, et al. Progress of right ventricle segmentation from short-axis images acquired with cardiac cine MRI[J]. Chinese J Magn Reson, 2019, 36(3): 377-391.
|
|
苏新宇, 王丽嘉, 聂生东, 等. 基于心脏磁共振短轴电影图像的右心室分割新进展[J]. 波谱学杂志, 2019, 36(3): 377-391.
|
[4] |
PETITJEAN C, DACHER J N. A review of segmentation methods in short axis cardiac MR images[J]. Med Image Anal, 2011, 15(2): 169-184.
doi: 10.1016/j.media.2010.12.004
pmid: 21216179
|
[5] |
SANTIAGO C, NASCIMENTO J C, MARQUES J S. Fast segmentation of the left ventricle in cardiac MRI using dynamic programming[J]. Comput Methods Programs Biomed, 2018, 154: 9-23.
doi: 10.1016/j.cmpb.2017.10.028
|
[6] |
YANG C, WU W G, SU Y Q, et al. Left ventricle segmentation via two-layer level sets with circular shape constraint[J]. Magn Reson Imaging, 2017, 38: 202-213.
doi: S0730-725X(17)30011-5
pmid: 28108373
|
[7] |
LEE H Y, CODELLA N C, CHAM M D, et al. Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI[J]. IEEE Trans Biomed Eng, 2010, 57(4): 905-913.
doi: 10.1109/TBME.2009.2014545
|
[8] |
BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?[J]. IEEE Trans Med Imaging, 2018, 37(11): 2514-2525.
doi: 10.1109/TMI.2018.2837502
|
[9] |
AVENDI M R, KHERADVAR A, JAFARKHANI H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI[J]. Med Image Anal, 2016, 30: 108-119.
doi: S1361-8415(16)00012-8
pmid: 26917105
|
[10] |
NGO T A, LU Z, CARNEIRO G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance[J]. Med Image Anal, 2017, 35: 159-171.
doi: S1361-8415(16)30038-X
pmid: 27423113
|
[11] |
YANG H R, SUN J, LI H B, et al. Deep fusion net for multi-atlas segmentation: Application to cardiac MR images[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016, Cham: Springer International Publishing, 2016: 521-528.
|
[12] |
ROMAGUERA L V, ROMERO F P, FILHO C F, et al. Myocardial segmentation in cardiac magnetic resonance images using fully convolutional neural networks[J]. Biomed Signal Proces, 2018, 44: 48-57.
doi: 10.1016/j.bspc.2018.04.008
|
[13] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[J]. Computer Vision and Pattern Recognition, 2017. arXiv:1612.01105.
|
[14] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE T Pattern Anal, 2017, 39(12): 2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[15] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015.
|
[16] |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:4th International Workshop. Granada, Spain, 2018:11045.
|
[17] |
ZOTTI C, LUO Z, HUMBERT O, et al. GridNet with automatic shape prior registration for automatic MRI cardiac segmentation[C]// Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. Cham: Springer International Publishing, 2018: 73-81.
|
[18] |
KHENED M, ALEX V, KRISHNAMURTHI G. Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest[C]// Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. Cham: Springer International Publishing, 2018: 140-151.
|
[19] |
KHENED M, KOLLERATHU V A, KRISHNAMURTHI G. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers[J]. Med Image Anal, 2019, 51: 21-45.
doi: S1361-8415(18)30848-X
pmid: 30390512
|
[20] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE T Pattern Anal, 2020, 42(8): 1-13.
|
[21] |
HE K M, ZhANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2016: 770-778.
|
[22] |
WANG T T, WANG H, ZHU Y C, et al. Motion tracking of left myocardium in cardiac cine magnetic resonance image based on displacement flow U-Net and variational autoencoder[J]. Acta Phys Sin, 2021, 70(22): 228701.
doi: 10.7498/aps
|
|
王甜甜, 王慧, 朱艳春, 等. 基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪[J]. 物理学报, 2021, 70(22): 228701.
doi: 10.7498/aps
|
[23] |
LONG J, SHELHAMER E, DARREL T. Fully convolutional networks for semantic segmentation[J]. IEEE T Pattern Anal, 2014, 39(4): 640-651.
doi: 10.1109/TPAMI.2016.2572683
|