波谱学杂志 ›› 2023, Vol. 40 ›› Issue (2): 192-206.doi: 10.11938/cjmr20223027
贺彩艳1,2,肖宇情1,2,李申慧1,*(),徐君1,邓风1,#()
收稿日期:
2022-10-10
出版日期:
2023-06-05
在线发表日期:
2022-11-03
通讯作者:
李申慧,邓风
E-mail:lishenhui@wipm.ac.cn;dengf@wipm.ac.cn
基金资助:
HE Caiyan1,2,XIAO Yuqing1,2,LI Shenhui1,*(),XU Jun1,DENG Feng1,#()
Received:
2022-10-10
Published:
2023-06-05
Online:
2022-11-03
Contact:
LI Shenhui,DENG Feng
E-mail:lishenhui@wipm.ac.cn;dengf@wipm.ac.cn
摘要:
固体核磁共振(NMR)因对结构和化学环境敏感,已广泛应用于研究金属有机框架材料(MOFs)在吸附分离应用上的主客体相互作用机制.多核、多维、变温固体NMR实验可以用来研究低碳碳氢化合物、CO2在MOFs孔道内的吸附行为(包括优先吸附位点、动力学性质、扩散快慢等).固体NMR也可用来直接测定低碳烷烃/烯烃在MOFs中的分离选择性,并观测低碳烷烃/烯烃在MOFs孔道内的竞争优先吸附.此外,固体NMR还可用来揭示常见化学品与MOFs的主客体相互作用模式.这些研究的开展将有助于人们理解MOFs在吸附和分离过程中存在的内在构效关系.
中图分类号:
贺彩艳,肖宇情,李申慧,徐君,邓风. 固体NMR研究MOFs吸附和分离过程中的主客体相互作用[J]. 波谱学杂志, 2023, 40(2): 192-206.
HE Caiyan,XIAO Yuqing,LI Shenhui,XU Jun,DENG Feng. Solid-state NMR Investigation of the Host-guest Interactions in Gas Adsorption and Chemical Separation Using MOFs as Adsorbents[J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 192-206.
[1] |
FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
doi: 10.1126/science.1230444 |
[2] |
ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chem Rev, 2012, 112(2): 673-674.
doi: 10.1021/cr300014x |
[3] |
QI G D, WANG Q, XU J, et al. Solid-state NMR studies of internuclear correlations for characterizing catalytic materials[J]. Chem Soc Rev, 2021, 50(15): 8382-8399.
doi: 10.1039/D0CS01130D |
[4] |
MARCHETTI A, CHEN J, PANG Z, et al. Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR[J]. Adv Mater, 2017, 29(14): 1605895.
doi: 10.1002/adma.v29.14 |
[5] | FAN B H, XU S T, WEI Y X, et al. Progresses of hyperpolarized 129Xe NMR application in porous materials and catalysis[J]. Magn Reson Lett, 2021, 1(1): 11-27. |
[6] | YANG W J, HUANG J. Analysis of local structure, acidic property and activity of solid acids by solid-state nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2021, 38(4): 460-473. |
杨文杰, 黄骏. 基于固体核磁共振技术的固体酸结构、酸性及活性分析[J]. 波谱学杂志, 2021, 38(4): 460-473. | |
[7] | XIAO Y, XIA C J, YI X F, et al. Progress in the studies on Sn-zeolites by solid-state nuclear magnetic resonance[J]. Chinese J Magn Reson, 2021, 38(4): 571-584. |
肖瑶, 夏长久, 易先锋, 等. 固体核磁共振技术在锡硅分子筛表征中的应用[J]. 波谱学杂志, 2021, 38(4): 571-584. | |
[8] |
XU J, LIU Y M, LIPTON A S, et al. Amine dynamics in diamine-appended Mg2 (dobpdc) metal-organic frameworks[J]. J Phys Chem Lett, 2019, 10(22): 7044-7049.
doi: 10.1021/acs.jpclett.9b02883 |
[9] | LI X, SHEN W L, SUN H. Solid-state NMR studies of sulfonated SBA-15 and the synergistic catalysis of fructose into 5-hydroxymethylfurfural with dimethyl sulfoxide[J]. Magn Reson Lett, 2022, 2(1): 38-47. |
[10] | WANG C, DAI W L, WU G J, et al. Application of ammonia probe-assisted solid-state NMR technique in zeolites and catalysis[J]. Magn Reson Lett, 2022, 2(1): 28-37. |
[11] | GAO X Z, ZHANG Y, WANG X M, et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid-state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37(1): 95-103. |
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37(1): 95-103. | |
[12] | WANG Y X, WANG Q, XU J, et al. The effects of ammonium hexafluorosilicate post-treatment on the acidity of H-ZSM-5 zeolite studied by solid-state NMR spectroscopy[J]. Chinese J Magn Reson, 2021, 38(4): 514-522. |
王永祥, 王强, 徐君, 等. 六氟硅酸铵后处理对H-ZSM-5分子筛酸性影响的固体NMR研究[J]. 波谱学杂志, 2021, 38(4): 514-522. | |
[13] |
WONG Y T A, MARTINS V, LUCIER B E, et al. Solid-state NMR spectroscopy: A powerful technique to directly study small gas molecules adsorbed in metal-organic frameworks[J]. Chem - Eur J, 2019, 25(8): 1848-1853.
doi: 10.1002/chem.v25.8 |
[14] |
BRUNNER E, RAUCHE M. Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal-organic frameworks[J]. Chem Sci, 2020, 11(17): 4297-4304.
doi: 10.1039/d0sc00735h pmid: 34122887 |
[15] | BERTMER M. Solid-state NMR of small molecule adsorption in metal-organic frameworks (MOFs)[M]. ATTAURRAHMAN Ed Annu Rep NMR Spectrosc, 2020: 1-64. |
[16] |
FU Y, GUAN H X, YIN J L, et al. Probing molecular motions in metal-organic frameworks with solid-state NMR[J]. Coord Chem Rev, 2021, 427: 213563.
doi: 10.1016/j.ccr.2020.213563 |
[17] |
JAEGERS N R, MUELLER K T, WANG Y, et al. Variable temperature and pressure operando MAS NMR for catalysis science and related materials[J]. Acc Chem Res, 2020, 53(3): 611-619.
doi: 10.1021/acs.accounts.9b00557 |
[18] |
WITHERSPOON V J, XU J, REIMER J A. Solid-state NMR investigations of carbon dioxide gas in metal-organic frameworks: Insights into molecular motion and adsorptive behavior[J]. Chem Rev, 2018, 118(20): 10033-10048.
doi: 10.1021/acs.chemrev.7b00695 pmid: 30288971 |
[19] |
LUCIER B E, CHEN S S, HUANG Y N. Characterization of metal-organic frameworks: Unlocking the potential of solid-state NMR[J]. Acc Chem Res, 2018, 51(2): 319-330.
doi: 10.1021/acs.accounts.7b00357 |
[20] | UR REHMAN S, XU S, XU H T, et al. The role of NMR in metal organic frameworks: deep insights into dynamics, structure and mapping of functional groups[J]. Mater Today Adv, 2022, 16: 100287. |
[21] |
HE C Y, LI S H, XIAO Y Q, et al. Application of solid-state NMR techniques for structural characterization of metal-organic frameworks[J]. Solid State Nucl Magn Reson, 2022, 117: 101772.
doi: 10.1016/j.ssnmr.2022.101772 |
[22] | LI Y X, ZHANG W L, HUANG Y N. Two open metal sites on the same metal: Dynamics of CO2 in MOF UTSA-74[J]. Magn Reson Lett, 2021, 1(2): 121-130. |
[23] |
LI S H, LAFON O, WANG W Y, et al. Recent advances of solid-state NMR spectroscopy for microporous materials[J]. Adv Mater, 2020, 32(44): 2002879.
doi: 10.1002/adma.v32.44 |
[24] |
ASHBROOK S E, DAVIS Z H, MORRIS R E, et al. O-17 NMR spectroscopy of crystalline microporous materials[J]. Chem Sci, 2021, 12(14): 5016-5036.
doi: 10.1039/D1SC00552A |
[25] |
PAUL G, BISIO C, BRASCHI I, et al. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials[J]. Chem Soc Rev, 2018, 47(15): 5684-5739.
doi: 10.1039/c7cs00358g pmid: 30014075 |
[26] |
DING S Y, DONG M, WANG Y W, et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II)[J]. J Am Chem Soc, 2016, 138(9): 3031-3037.
doi: 10.1021/jacs.5b10754 |
[27] |
COMOTTI A, BRACCO S, BEN T, et al. Molecular rotors in porous organic frameworks[J]. Angew Chem, 2014, 53(4): 1043-1047.
doi: 10.1002/anie.201309362 |
[28] |
LUCIER B E, ZHANG Y, LEE K J, et al. Grasping hydrogen adsorption and dynamics in metal-organic frameworks using 2H solid-state NMR[J]. Chem Commun, 2016, 52(48): 7541-7544.
doi: 10.1039/C6CC03205B |
[29] |
ZHANG Y, LUCIER B E, FISCHER M, et al. A multifaceted study of methane adsorption in metal-organic frameworks by using three complementary techniques[J]. Chem - Eur J, 2018, 24(31): 7866-7881.
doi: 10.1002/chem.v24.31 |
[30] |
CHEN M S, CHEN S S, CHEN W, et al. Analyzing gas adsorption in an amide-functionalized metal organic framework: are the carbonyl or amine groups responsible?[J]. Chem Mater, 2018, 30(11): 3613-3617.
doi: 10.1021/acs.chemmater.8b00681 |
[31] |
KHUDOZHITKOV A E, ARZUMANOV S S, KOLOKOLOV D I, et al. UiO-66 (Zr) MOF as a promising material for butane isomers separation: Evidence based on the analysis of the adsorbed alkanes mobility by 2H NMR and molecular dynamics simulation[J]. J Phys Chem C, 2021, 125(24): 13391-13400.
doi: 10.1021/acs.jpcc.1c02849 |
[32] |
LI J, LI S H, ZHENG A M, et al. Solid-state NMR studies of host-guest interaction between UiO-67 and light alkane at room temperature[J]. J Phys Chem C, 2017, 121(26): 14261-14268.
doi: 10.1021/acs.jpcc.7b04611 |
[33] |
XIAO Y Q, CHU Y Y, LI S H, et al. Primary adsorption sites of light alkanes in multivariate UiO-66 at room temperature as revealed by solid-state NMR[J]. J Phys Chem C, 2020, 124(6): 3738-3746.
doi: 10.1021/acs.jpcc.0c00184 |
[34] |
DVOYASHKINA N, FREUDE D, ARZUMANOV S S, et al. Monitoring the diffusivity of light hydrocarbons in a mixture by magic angle spinning pulsed field gradient NMR: methane/ethane/ethene in ZIF-8[J]. J Phys Chem C, 2017, 121(45): 25372-25376.
doi: 10.1021/acs.jpcc.7b09335 |
[35] |
CHMELIK C, FREUDE D, BUX H, et al. Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry[J]. Microporous Mesoporous Mater, 2012, 147(1): 135-141.
doi: 10.1016/j.micromeso.2011.06.009 |
[36] |
BANIANI A, CHMELIK C, FORMAN E M, et al. Anomalous relationship between molecular size and diffusivity of ethane and ethylene inside crystals of zeolitic imidazolate framework-11[J]. J Phys Chem C, 2019, 123(27): 16813-16822.
doi: 10.1021/acs.jpcc.9b03933 |
[37] |
FREUDE D, DVOYASHKINA N, ARZUMANOV S S, et al. NMR study of the host structure and guest dynamics investigated with alkane/alkene mixtures in metal organic frameworks ZIF-8[J]. J Phys Chem C, 2018, 123(3): 1904-1912.
doi: 10.1021/acs.jpcc.8b11673 |
[38] |
WEHRING M, GASCON J, DUBBELDAM D, et al. Self-diffusion studies in CuBTC by PFG NMR and MD simulations[J]. J Phys Chem C, 2010, 114(23): 10527-10534.
doi: 10.1021/jp102212w |
[39] |
KONG X Q, SCOTT E, DING W, et al. CO2 dynamics in a metal-organic framework with open metal sites[J]. J Am Chem Soc, 2012, 134(35): 14341-14344.
doi: 10.1021/ja306822p |
[40] |
WANG W D, LUCIER B E, TERSKIKH V V, et al. Wobbling and hopping: studying dynamics of CO2 adsorbed in metal-organic frameworks via 17O solid-state NMR[J]. J Phys Chem Lett, 2014, 5(19): 3360-3365.
doi: 10.1021/jz501729d |
[41] |
LU Y J, LUCIER B E, ZHANG Y, et al. Sizable dynamics in small pores: CO2 location and motion in the α-Mg formate metal-organic framework[J]. Phys Chem Chem Phys, 2017, 19(8): 6130-6141.
doi: 10.1039/C7CP00199A |
[42] |
ZHANG Y, LUCIER B E, HUANG Y N. Deducing CO2 motion, adsorption locations and binding strengths in a flexible metal-organic framework without open metal sites[J]. Phys Chem Chem Phys, 2016, 18(12): 8327-8341.
doi: 10.1039/C5CP04984A |
[43] |
WU B W, WONG Y A, LUCIER B E, et al. Exploring host-guest interactions in the α-Zn3 (HCOO)6 metal-organic framework[J]. ACS Omega, 2019, 4(2): 4000-4011.
doi: 10.1021/acsomega.8b03623 |
[44] |
CHEN S S, LUCIER B E, BOYLE P D, et al. Understanding the fascinating origins of CO2 adsorption and dynamics in MOFs[J]. Chem Mater, 2016, 28(16): 5829-5846.
doi: 10.1021/acs.chemmater.6b02239 |
[45] |
GUL-E-NOOR F, MENDT M, MICHEL D, et al. Adsorption of small molecules on Cu3(btc)2 and Cu3-xZnx(btc)2 metal-organic frameworks (MOF) as studied by solid-state NMR[J]. J Phys Chem C, 2013, 117(15): 7703-7712.
doi: 10.1021/jp400869f |
[46] |
DESVEAUX B E, WONG Y A, LUCIER B E, et al. CO2 behavior in a highly selective ultramicroporous framework: insights from single-crystal X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy[J]. J Phys Chem C, 2019, 123(29): 17798-17807.
doi: 10.1021/acs.jpcc.9b03221 |
[47] |
MILNER P J, SIEGELMAN R L, FORSE A C, et al. A diaminopropane-appended metal-organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism[J]. J Am Chem Soc, 2017, 139(38): 13541-13553.
doi: 10.1021/jacs.7b07612 |
[48] |
FORSE A C, MILNER P J, LEE J-H, et al. Elucidating CO2 chemisorption in diamine-appended metal-organic frameworks[J]. J Am Chem Soc, 2018, 140(51): 18016-18031.
doi: 10.1021/jacs.8b10203 |
[49] |
SIEGELMAN R L, MILNER P J, FORSE A C, et al. Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal-organic framework[J]. J Am Chem Soc, 2019, 141(33): 13171-13186.
doi: 10.1021/jacs.9b05567 |
[50] |
DINAKAR B, FORSE A C, JIANG H Z, et al. Overcoming metastable CO2 Adsorption in a bulky diamine-appended metal-organic framework[J]. J Am Chem Soc, 2021, 143(37): 15258-15270.
doi: 10.1021/jacs.1c06434 |
[51] |
XIAO Y Q, CHU Y Y, LI S H, et al. Host-guest interaction in ethylene and ethane separation on zeolitic imidazolate frameworks as revealed by solid-state NMR spectroscopy[J]. Chem - Eur J, 2021, 27(44): 11303-11308.
doi: 10.1002/chem.v27.44 |
[52] |
XIAO Y Q, CHU Y Y, LI S H, et al. Preferential adsorption sites for propane/propylene separation on ZIF-8 as revealed by solid-state NMR spectroscopy[J]. Phys Chem Chem Phys, 2022, 24(11): 6535-6543.
doi: 10.1039/d1cp05931a pmid: 35258049 |
[53] |
SIN M, KAVOOSI N, RAUCHE M, et al. In situ 13C NMR spectroscopy study of CO2/CH4 mixture adsorption by metal-organic frameworks: does flexibility influence selectivity?[J]. Langmuir, 2019, 35(8): 3162-3170.
doi: 10.1021/acs.langmuir.8b03554 |
[54] |
ROZTOCKI K, RAUCHE M, BON V, et al. Combining in situ techniques (XRD, IR, and 13C NMR) and gas adsorption measurements reveals CO2-induced structural transitions and high CO2/CH4 selectivity for a flexible metal-organic framework JUK-8[J]. ACS Appl Mater Interfaces, 2021, 13(24): 28503-28513.
doi: 10.1021/acsami.1c07268 |
[55] |
LI S H, LI J, TANG J, et al. Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR[J]. Solid State Nucl Magn Reson, 2018, 90: 1-6.
doi: S0926-2040(17)30150-9 pmid: 29316473 |
[56] |
XU J, TERSKIKH V V, HUANG Y N. 25Mg solid-state NMR: a sensitive probe of adsorbing guest molecules on a metal center in metal-organic framework CPO-27-Mg[J]. J Phys Chem Lett, 2013, 4(1): 7-11.
doi: 10.1021/jz301954t |
[57] |
GUL-E-NOOR F, JEE B, PöPPL A, et al. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy[J]. Phys Chem Chem Phys, 2011, 13(17): 7783-7788.
doi: 10.1039/c0cp02848g |
[58] |
GIOVINE R, POURPOINT F, DUVAL S, et al. The surprising stability of Cu3(btc)2 metal-organic framework under steam flow at high temperature[J]. Cryst Growth Des, 2018, 18(11): 6681-6693.
doi: 10.1021/acs.cgd.8b00931 |
[59] |
GUL-E-NOOR F, MICHEL D, KRAUTSCHEID H, et al. Time dependent water uptake in Cu3(btc)2 MOF: Identification of different water adsorption states by 1H MAS NMR[J]. Microporous Mesoporous Mater, 2013, 180: 8-13.
doi: 10.1016/j.micromeso.2013.06.033 |
[60] |
MCHUGH L N, MCPHERSON M J, MCCORMICK L J, et al. Hydrolytic stability in hemilabile metal-organic frameworks[J]. Nat Chem, 2018, 10(11): 1096-1102.
doi: 10.1038/s41557-018-0104-x pmid: 30104722 |
[61] |
GUL-E-NOOR F, JEE B, MENDT M, et al. Formation of mixed metal Cu3-xZnx(btc)2 frameworks with different zinc contents: Incorporation of Zn2+ into the metal-organic framework structure as studied by solid-state NMR[J]. J Phys Chem C, 2012, 116(39): 20866-20873.
doi: 10.1021/jp3054857 |
[62] |
NANDY A, FORSE A C, WITHERSPOON V J, et al. NMR spectroscopy reveals adsorbate binding sites in the metal-organic framework UiO-66 (Zr)[J]. J Phys Chem C, 2018, 122(15): 8295-8305.
doi: 10.1021/acs.jpcc.7b12628 |
[63] |
TANG J, CHU Y Y, LI S H, et al. Breathing effect via solvent inclusions on the linker rotational dynamics of functionalized MIL-53[J]. Chem - Eur J, 2021, 27(59): 14711-14720.
doi: 10.1002/chem.v27.59 |
[64] | XU J, TERSKIKH V V, CHU Y Y, et al. 13C chemical shift tensors in MOF α-Mg3(HCOO)6: Which component is more sensitive to host-guest interaction?[J]. Magn Reson Chem, 2020, 58(11): 1082-1090. |
[65] |
HOSSAINÁ KHAN A, AMANZADEHÁ SALOUT S, SHUPLETSOV L, et al. Solid-state NMR insights into alcohol adsorption by metal-organic frameworks: adsorption state, selectivity, and adsorption-induced phase transitions[J]. Chem Commun, 2022, 58(28): 4492-4495.
doi: 10.1039/D2CC00638C |
[66] |
XU X H, LI S H, LIU Q, et al. Isolated π-interaction sites in mesoporous MOF backbone for repetitive and reversible dynamics in water[J]. ACS Appl Mater Interfaces, 2018, 11(1): 973-981.
doi: 10.1021/acsami.8b19211 |
[67] |
WITTMANN T, MONDAL A, TSCHENSE C B, et al. Probing interactions of N-donor molecules with open metal sites within paramagnetic Cr-MIL-101: a solid-state NMR spectroscopic and density functional theory study[J]. J Am Chem Soc, 2018, 140(6): 2135-2144.
doi: 10.1021/jacs.7b10148 pmid: 29316398 |
[68] |
VENEL F, VOLKRINGER C, LAFON O, et al. Probing adsorption of water and DMF in UiO-66 (Zr) using solid-state NMR[J]. Solid State Nucl Magn Reson, 2022, 120: 101797-101797.
doi: 10.1016/j.ssnmr.2022.101797 |
[69] |
BAE J, CHOI J S, HWANG S, et al. Multiple coordination exchanges for room-temperature activation of open-metal sites in metal-organic frameworks[J]. ACS Appl Mater Interfaces, 2017, 9(29): 24743-24752.
doi: 10.1021/acsami.7b07299 |
[1] | 董洪春,张志兰,王宁,唐丹丹,裘子慧,舒婕. 基于固体核磁共振多次交叉极化的定量检测优化技术[J]. 波谱学杂志, 2023, 40(2): 136-147. |
[2] | 覃瑞,王超,王强,胡敏,李金林,徐君,邓风. SSZ-13分子筛上甲醇转化过程中甲氧基物种的生成与活性研究[J]. 波谱学杂志, 2022, 39(4): 439-447. |
[3] | 曾姝, 徐舒涛, 魏迎旭, 刘中民. H-SSZ-13分子筛催化乙醇脱水制乙烯反应的原位固体核磁共振研究[J]. 波谱学杂志, 2022, 39(2): 123-132. |
[4] | 陈翰迪,孔海宇,赵侦超,张维萍. 固体核磁共振结合密度泛函理论计算研究SSZ-39分子筛的钠离子落位与铝分布[J]. 波谱学杂志, 2021, 38(4): 543-551. |
[5] | 杨文杰,黄骏. 基于固体核磁共振技术的固体酸结构、酸性及活性分析[J]. 波谱学杂志, 2021, 38(4): 460-473. |
[6] | 夏锡锋,张文静,林芝晔,柯晓康,温玉洁,王芳,陈俊超,彭路明. 氧化物纳米材料表面结构与性质的固体核磁共振波谱研究[J]. 波谱学杂志, 2021, 38(4): 533-542. |
[7] | 王永祥,王强,徐君,夏清华,邓风. 六氟硅酸铵后处理对H-ZSM-5分子筛酸性影响的固体NMR研究[J]. 波谱学杂志, 2021, 38(4): 514-522. |
[8] | 王子春,黄骏,姜怡娇. 五配位铝强化硅铝固体酸的固体核磁共振研究[J]. 波谱学杂志, 2021, 38(4): 552-570. |
[9] | 史朝为,石攀,田长麟. 非天然氨基酸在蛋白质动态特性核磁共振研究中的应用[J]. 波谱学杂志, 2021, 38(4): 523-532. |
[10] | 肖瑶,夏长久,易先锋,刘凤庆,刘尚斌,郑安民. 固体核磁共振技术在锡硅分子筛表征中的应用[J]. 波谱学杂志, 2021, 38(4): 571-584. |
[11] | 高树树,徐舒涛,魏迎旭,刘中民. 固体核磁共振技术在甲醇制烯烃反应中的应用[J]. 波谱学杂志, 2021, 38(4): 433-447. |
[12] | 陈欣,付颖懿,岳斌,贺鹤勇. 固体核磁共振技术研究金属氧化物类固体酸催化剂的酸碱性[J]. 波谱学杂志, 2021, 38(4): 491-502. |
[13] | 张之杰, 李端秀, 罗春, 仇汝臣, 邓宗武, 张海禄. 晶体学辅助的2-吡啶甲酸固体13C化学位移理论计算归属[J]. 波谱学杂志, 2020, 37(1): 67-75. |
[14] | 雷振宇, 梁欣苗, 雷友义, 杨丽, 冯继文. 固体核磁共振技术在锂/钠离子电池碳负极中的应用及研究进展[J]. 波谱学杂志, 2020, 37(1): 28-39. |
[15] | 魏令, 张善民. 利用相位步进脉冲消除探头13C NMR背景信号[J]. 波谱学杂志, 2020, 37(1): 123-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||