1 |
TERRENO E , CASTELLI D D , VIALE A , et al. Challenges for molecular magnetic resonance imaging[J]. Chem Rev, 2010, 110 (5): 3019- 3042.
doi: 10.1021/cr100025t
|
2 |
WAHSNER J , GALE E M , RODRÍGUEZ-RODRÍGUEZ A , et al. Chemistry of MRI contrast agents: current challenges and new frontiers[J]. Chem Rev, 2019, 119 (2): 957- 1057.
doi: 10.1021/acs.chemrev.8b00363
|
3 |
QIAO Z , SHI X Y . Dendrimer-based molecular imaging contrast agents[J]. Prog Polym Sci, 2015, 44, 1- 27.
doi: 10.1016/j.progpolymsci.2014.08.002
|
4 |
HAASE A . Snapshot FLASH MRI. Applications to T1, T2, and chemical-shift imaging[J]. Magn Reson Med, 1990, 13 (1): 77- 89.
doi: 10.1002/mrm.1910130109
|
5 |
TEGOLA L L , GUGLIELMI G . The role of MRI in rectal cancer: An updated review[J]. Curr Radiol Rep, 2020,
doi: 10.1007/s40134-020-00362-2
|
6 |
GAO J H , LEI H , CHEN Q , et al. Magnetic resonance imaging: progresses and perspective[J]. Scientia Sinica Vitae, 2020, 50 (11): 1285- 1295.
|
|
高家红, 雷皓, 陈群, 等. 磁共振成像发展综述[J]. 中国科学: 生命科学, 2020, 50 (11): 1285- 1295.
|
7 |
SHELLOCK F G , KANAL E . Safety of magnetic resonance imaging contrast agents[J]. J Magn Reson Imaging, 1999, 10 (3): 477- 484.
doi: 10.1002/(SICI)1522-2586(199909)10:3<477::AID-JMRI33>3.0.CO;2-E
|
8 |
HU F Q , ZHAO Y S . Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes[J]. Nanoscale, 2012, 4 (20): 6235- 6243.
doi: 10.1039/c2nr31865b
|
9 |
JIANG W P , WANG Q , ZHOU X . Nuclear magnetic resonance spectroscopy and imaging[J]. Physics, 2013, 42 (12): 826- 837.
|
|
蒋卫平, 王琦, 周欣. 磁共振波谱与成像技术[J]. 物理, 2013, 42 (12): 826- 837.
|
10 |
ŠIMEČKOVÁ P , HUBATKA F , KOTOUEK J , et al. Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages[J]. Sci Rep, 2020, 10 (1): 4780.
doi: 10.1038/s41598-020-60284-z
|
11 |
LAUER M , LAUER A , YOU S J , et al. Neurotoxicity of subarachnoid Gd-based contrast agent accumulation: a potential complication of intraoperative MRI?[J]. Neurosurg Focus, 2021, 50 (1): E12.
doi: 10.3171/2020.10.FOCUS20402
|
12 |
PROMMARAT A , CHAMCHOD F . Pharmacokinetic modeling of Gadolinium nanoparticles (Gd-NPs) with the sojourn time in vasa vasorum for the contrast enhanced MRI[J]. Adv Differ Equ-NY, 2020, 662.
|
13 |
ZENG Q B , GUO Q L , LUO Q , et al. Manganese-based contrast agents for MRI[J]. Chinese J Magn Reson Imaging, 2014, 5 (4): 315- 320.
|
|
曾庆斌, 郭茜旎, 罗晴, 等. 锰对比剂在MRI中的应用[J]. 磁共振成像, 2014, 5 (4): 315- 320.
|
14 |
CARAVAN P , ELLISON J J , MCMURRY T J , et al. Gadolinium(Ⅲ) chelates as MRI contrast agents: structure, dynamics, and applications[J]. Chem Rev, 1999, 99 (9): 2293- 2352.
doi: 10.1021/cr980440x
|
15 |
CHAN K C , FU Q L , GUO H , et al. GD-DTPA enhanced MRI of ocular transport in a rat model of chronic glaucoma[J]. Exp Eye Res, 2008, 87 (4): 334- 341.
doi: 10.1016/j.exer.2008.06.015
|
16 |
RATZINGER G , AGRAWAL P , KORNER W , et al. Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents[J]. Biomaterials, 2010, 31 (33): 8716- 8723.
doi: 10.1016/j.biomaterials.2010.07.095
|
17 |
YANO K , MATSUMOTO T , OKAMOTO Y , et al. Fabrication of Gd-DOTA-functionalized carboxylated nanodiamonds for selective MR imaging (MRI) of the lymphatic system[J]. Nanotechnology, 2021, 32, 23512.
|
18 |
KUO P H , KANAL E , ABU-ALFA A K , et al. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis1[J]. Radiology, 2007, 242 (3): 647- 649.
doi: 10.1148/radiol.2423061640
|
19 |
HUANG X , YUAN Y P , RUAN W W , et al. pH-responsive theranostic nanocomposites as synergistically enhancing positive and negative magnetic resonance imaging contrast agents[J]. J Nanobiotechnology, 2018, 16 (1): 30.
doi: 10.1186/s12951-018-0350-5
|
20 |
REZAEI S J T , MALEKZADEH A M , RAMAZANI A , et al. pH-sensitive magnetite nanoparticles modified with hyperbranched polymers and folic acid for targeted imaging and therapy[J]. Curr Drug Deliv, 2019, 16 (9): 839- 848.
doi: 10.2174/1567201816666191002102353
|
21 |
TAN H , XUE J M , SHUTER B , et al. Synthesis of PEOlated Fe3O4@SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging[J]. Adv Funct Mater, 2010, 20 (5): 722- 731.
doi: 10.1002/adfm.200901820
|
22 |
XIONG C J , YUAN X H , ZHOU J D , et al. Synthesis of folic acid-modified Fe3O4 nano-magnetic fluid for in vivo tumor cell labeling[J]. Afr J Pharm Pharmaco, 2013, 7 (12): 658- 665.
doi: 10.5897/AJPP12.1391
|
23 |
De BRESSER J , BRUNDEL M , CONIJN M , et al. Cerebral microbleed detection on 7 T MRI: Reliability and effects of image processing[J]. Alzheimers Dement, 2011, 7 (4-supp-S): S56- S57.
|
24 |
WU Z , MITTAL S , KISH K , et al. Identification of calcification with MRI using susceptibility-weighted imaging: A case study[J]. J Magn Reson Imaging, 2009, 29 (1): 177- 182.
doi: 10.1002/jmri.21617
|
25 |
ALKHUNIZI S M, ABOU-KHEIR W, LAWAND N. MRI contrast agents: evidence of gadolinium metal deposition in the spinal cord and peripheral nerves[C]. Belgrade, Serbia: Federation of European Neuroscience Societies (FENS) Regional Meeting, 2019.
|
26 |
SHAO D D , WANG X X , PAN Z L , et al. Imaging hippocampus of mental patients with BLADE technique[J]. Chinese J Magn Reson, 2019, 36 (3): 261- 267.
|
|
邵丹丹, 王雪雪, 潘自来, 等. 刀锋伪影校正技术在精神疾病患者海马MRI检查中的应用[J]. 波谱学杂志, 2019, 36 (3): 261- 267.
|
27 |
HONG Y , ZHUANG Y M , SUN Y , et al. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles[J]. Biomaterials, 2011, 32 (20): 4584- 4593.
doi: 10.1016/j.biomaterials.2011.03.018
|
28 |
KEASBERRY N A , BA OBRE-L PEZ M , WOOD C , et al. Tuning the relaxation rates of dual-mode T1/T2 nanoparticle contrast agents: a study into the ideal system[J]. Nanoscale, 2015, 7 (38): 16119- 16128.
doi: 10.1039/C5NR04400F
|
29 |
LI F F , ZHI D B , LUO Y F , et al. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents[J]. Nanoscale, 2016, 8 (25): 12826- 12833.
doi: 10.1039/C6NR02620F
|
30 |
SHIN T H , CHOI J S , YUN S , et al. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials[J]. ACS Nano, 2014, 8 (4): 3393- 401.
doi: 10.1021/nn405977t
|
31 |
WANG L R , LIN H Y , MA L C , et al. Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T1-T2 dual-mode contrast agents for accurate liver tumor imaging[J]. Nanoscale, 2017, 9 (13): 4516- 4523.
doi: 10.1039/C7NR01134B
|
32 |
ZHOU Z J , HUANG D Y , BAO J F , et al. A synergistically enhanced T1-T2 dual-modal contrast agent[J]. Adv Mater, 2012, 24 (46): 6223- 6228.
doi: 10.1002/adma.201203169
|
33 |
ZHAO M M , ZHANG Y H , ZHANG P L , et al. A magnetic resonance-fluorescent dual-mode imaging probe for stem cell tracking[J]. Chinese J Magn Reson, 2019, 36 (2): 127- 137.
|
|
赵敏敏, 张艳辉, 张朋利, 等. 一种示踪干细胞的磁共振-荧光双模成像探针[J]. 波谱学杂志, 2019, 36 (2): 127- 137.
|
34 |
LIANG G , RONALD J , CHEN Y , et al. Controlled self-assembling of gadolinium nanoparticles as smart molecular magnetic resonance imaging contrast agents[J]. Angew Chem Int Ed Engl, 2011, 50 (28): 6283- 6286.
doi: 10.1002/anie.201007018
|
35 |
ZHANG Y H , ZHANG H Y , ZHANG H L , et al. A new Gd-based T2-weighted magnetic resonance imaging contrast agent: preparation and application in stem cell imaging[J]. Chinese J Magn Reson, 2017, 34 (3): 302- 310.
|
|
张艳辉, 张宏岩, 张海禄, 等. 新型Gd基T2造影剂的制备和应用[J]. 波谱学杂志, 2017, 34 (3): 302- 310.
|