波谱学杂志 ›› 2015, Vol. 32 ›› Issue (2): 228-247.doi: 10.11938/cjmr20150207
郁桂云1,彭路明2*
收稿日期:
2015-02-11
修回日期:
2015-05-11
出版日期:
2015-06-05
发布日期:
2015-06-05
作者简介:
*通讯联系人:彭路明,电话:+86-25-83686793, E-mail: luming@nju.edu.cn.
基金资助:
The National Basic Research Program of China (2013CB934800), the National Natural Science Foundation of China (NSFC) (21073083, 20903056 and 21222302).
YU Gui-yun1,PENG Lu-ming2*
Received:
2015-02-11
Revised:
2015-05-11
Online:
2015-06-05
Published:
2015-06-05
About author:
YU Gui-yun(1979-), female, born in Jiangsu, PhD., her research focuses on solid-state NMR and layered materials,E-mail: yuguiyun1@163.com.
*Corresponding author:PENG Lu-ming, Tel: +86-25-83686793, E-mail: luming@nju.edu.cn.
Supported by:
The National Basic Research Program of China (2013CB934800), the National Natural Science Foundation of China (NSFC) (21073083, 20903056 and 21222302).
摘要:
层状双氢氧化物(LDHs)作为一类非常重要的无机超分子材料,已经被广泛应用于催化、离子交换、生命科学等众多领域.固体核磁共振谱学是研究层状双氢氧化 物局域结构和动态特征的一种强有力手段,提供了非常丰富的信息.特别是最近,借助固体核磁共振在探索层状双氢氧化物的结构方面取得了非常重要的进展(如:阳离子的有序性信息).该文主要介绍了最近40 年来固体核磁共振研究层状双氢氧化物方面的重要进展.
中图分类号:
郁桂云1,彭路明2*. 固体核磁共振谱学研究层状双氢氧化物[J]. 波谱学杂志, 2015, 32(2): 228-247.
YU Gui-yun1,PENG Lu-ming2*. Solid-State NMR Studies of Layered Double Hydroxides: A Review[J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 228-247.
[1] Martin K J, Pinnavaia T J. Layered double hydroxides as supported anionic reagents. Halide-ion reactivity in zinc chromium hexahydroxide halide hydrates [ Zn2 Cr (OH) 6x.nH2O](x = Cl, i)[J]. J Am Chem Soc, 1986, 108(3): 541-542.[2] Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications[J]. Catal Today, 1991, 11(2): 173-301.[3] De Roy A, Forano C, Besse J. Layered double hydroxides: Synthesis and post-synthesis modification[J]. Layered Double Hydroxides: Present and Future, 2001: 1-39.[4] He S, Zhao Y F, Wei M, et al. Fabrication of hierarchical layered double hydroxide framework on aluminum foam as a structured adsorbent for water treatment[J]. Ind Eng Chem Res, 2012, 51(1): 285-291.[5] Torres-Rodríguez D A, Lima E, Valente J S, et al. CO2 capture at low temperatures (30–80 ℃) and in the presence of water vapor over a thermally activated Mg–Al layered double hydroxide[J]. J Phys Chem A, 2011, 115(44): 12 243-12 250.[6] Morandi S, Manzoli M, Prinetto F, et al. Supported Ni catalysts prepared by intercalation of layered double hydroxides: Investigation of acid–base properties and nature of Ni phases[J]. Micropor Mesopor Mat, 2012, 147(1): 178-187.[7] Primo A, Marino T, Corma A, et al. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method[J]. J Am Chem Soc, 2011, 133(18): 6 930-6 933.[8] Zhang M C, Han D M, Lu C, et al. Organo-modified layered double hydroxides switch-on chemiluminescence[J]. J Phys Chem C, 2012, 116(10): 6 371-6 375.[9] Shi W, Ji X, Zhang S, et al. Fluorescence chemosensory ultrathin films for Cd2+ based on the assembly of benzothiazole and layered double hydroxide[J]. J Phys Chem C, 2011, 115(42): 20 433-20 441.[10] Shao M, Ning F, Zhao J, et al. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins[J]. J Am Chem Soc, 2012, 134(2): 1 071-1 077.[11] Faour A, Mousty C, Prevot V, et al. Correlation among structure, microstructure, and electrochemical properties of NiAl–CO3 layered double hydroxide thin films[J]. J Phys Chem C, 2012, 116(29): 15 646-15 659.[12] Darder M, López-Blanco M, Aranda P, et al. Bio-nanocomposites based on layered double hydroxides[J]. Chem Mater, 2005, 17(8): 1 969-1 977.[13] Sideris P J, Nielsen U G, Gan Z, et al. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy[J]. Science, 2008, 321(5 885): 113-117.[14] MacKenzie K J, Smith M E. Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials[M]. Elsevier, 2002.[15] Lesage A. Recent advances in solid-state NMR spectroscopy of spin I = 1/2 nuclei[J]. Phys Chem Chem Phys, 2009, 11(32): 6 876-6 891.[16] Ashbrook S E. Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei[J]. Phys Chem Chem Phys, 2009, 11(32): 6 892-6 905.[17] Sutrisno A, Huang Y N. Multinuclear solid-state NMR and quantum chemical investigations of layered transition metal disulfides [J]. Chinese J Magn Reson, 2013, (4): 461-487.[18] Marcelin G, Stockhausen N, Post J, et al. Dynamics and ordering of intercalated water in layered metal hydroxides[J]. J Phys Chem, 1989, 93(11): 4 646-4 650.[19] Rey F, Fornés V, Rojo J M. Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study[J]. J Chem Soc Faraday T, 1992, 88(15): 2 233-2 238.[20] Van der Pol A, Mojet B, Van de Ven E, et al. Ordering of intercalated water and carbonate anions in hydrotalcite. An NMR study[J]. J Phys Chem, 1994, 98(15): 4 050-4 054.[21] Reinholdt M X, Babu P K, Kirkpatrick R J. Proton dynamics in layered double hydroxides: A 1H T1 relaxation and line width investigation[J]. J Phys Chem C, 2009, 113(24): 10 623-10 631.[22] Depège C, El Metoui F Z, Forano C, et al. Polymerization of silicates in layered double hydroxides[J]. Chem Mater, 1996, 8(4): 952-960.[23] Aramendia M A, Borau V, Jimenez C, et al. Synthesis, characterization, and 1H and 71Ca MAS NMR spectroscopy of a novel Mg/Ga double layered hydroxide[J]. J Solid State Chem, 1997, 131(1): 78-83.[24] Aramend??a M a A, Borau V, Jiménez C, et al. Xrd and 1H MAS NMR spectroscopic study of mixed oxides obtained by calcination of layered-double hydroxides[J]. Mater Lett, 2000, 46(6): 309-314.[25] Combourieu B, Inacio J, Delort A M, et al. Differentiation of mobile and immobile pesticides on anionic clays by 1H HR MAS NMR spectroscopy[J]. Chem Commun, 2001, (21): 2 214-2 215.[26] Yesinowski J P, Eckert H. Hydrogen environments in calcium phosphates: Proton MAS NMR at high spinning speeds[J]. J Am Chem Soc, 1987, 109(21): 6 274-6 282.[27] Cadars S, Layrac G, Gerardin C, et al. Identification and quantification of defects in the cation ordering in Mg/Al layered double hydroxides[J]. Chem Mater, 2011, 23(11): 2 821-2 831.[28] Sideris P J, Blanc F, Gan Z, et al. Identification of cation clustering in Mg-Al layered double hydroxides using multinuclear solid state nuclear magnetic resonance spectroscopy[J]. Chem Mater, 2012, 24: 2 449-2 461.[29] Petersen L B, Lipton A S, Zorin V, et al. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy[J]. J Solid State Chem, 2014, 219: 242-246.[30] Yu G, Shen M, Wang M, et al. Probing local structure of layered double hydroxides with1h solid-state NMR spectroscopy on deuterated samples[J]. J Phys Chem Lett, 2014, 5(2): 363-369.[31] He Y Y, Wang X M, Li F, et al. Determination of 1H-27Al dipolar coupling constant by 1H/27Al S-RESIDOR experiment under fast MAS[J]. Chinese J Magn Reson, 2013, 30(1): 93-102.[32] Vyalikh A, Costa F R, Wagenknecht U, et al. From layered double hydroxides to layered double hydroxide-based nanocomposites- a solid-state NMR study[J]. J Phys Chem C, 2009, 113(51): 21 308-21 313.[33] Reichle W, Kang S, Everhardt D. The nature of the thermal decomposition of a catalytically active anionic clay mineral[J]. J Catal, 1986, 101(2): 352-359.[34] Beres A, Palinko I, Bertrand J C, et al. Dehydration-rehydration behaviour of layered double hydroxides: A study by X-ray diffractometry and MAS NMR spectroscopy[J]. J Mol Struct, 1997, 410: 13-16.[35] Weir M R, Kydd R A. Synthesis of heteropolyoxometalate-pillared Mg/Al, Mg/Ga, and Zn/Al layered double hydroxides via ldh-hydroxide precursors[J]. Inorg Chem, 1998, 37(21): 5 619-5 624.[36] Aramendía M A, Avilés Y, Borau V, et al. Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides: A spectroscopic study[J]. J Mater Chem, 1999, 9(7): 1 603-1 607.[37] del Arco M, Gutierrez S, Martin C, et al. Effect of the Mg:Al ratio on borate (or silicate)/nitrate exchange in hydrotalcite[J]. J Solid State Chem, 2000, 151(2): 272-280.[38] Hou X, Kirkpatrick R J. Thermal evolution of the Cl-LiAl2 layered double hydroxide: A multinuclear MAS NMR and xrd perspective[J]. Inorg Chem, 2001, 40(25): 6 397-6 404.[39] Prihod’ko R, Sychev M, Kolomitsyn I, et al. Layered double hydroxides as catalysts for aromatic nitrile hydrolysis[J]. Micropor Mesopor Mat, 2002, 56(3): 241-255.[40] Hsueh H B, Chen C Y. Preparation and properties of LDHs/epoxy nanocomposites[J]. Polymer, 2003, 44(18): 5 275-5 283.[41] Martínez-Ortiz M d J s, Lima E, Lara V, et al. Structural and textural evolution during folding of layers of layered double hydroxides[J]. Langmuir, 2008, 24(16): 8 904-8 911.[42] Mackenzie K J D, Meinhold R H, Sherriff B L, et al. 27Al and 25Mg solid-state magic-angle-spinning nuclear-magneticresonance study of hydrotalcite and its thermal-decomposition sequence[J]. J Mater Chem, 1993, 3(12): 1 263-1 269.[43] Rocha J, del Arco M, Rives V, et al. Reconstruction of layered double hydroxides from calcined precursors: A powder xrd and 27Al MAS NMR study[J]. J Mater Chem, 1999, 9(10): 2 499-2 503.[44] Benito P, Labajos F M, Mafra L, et al. Carboxylate-intercalated layered double hydroxides aged under microwave-hydrothermal treatment[J]. J Solid State Chem, 2009, 182(1): 18-26.[45] Vyalikh A, Massiot D, Scheler U. Structural characterisation of aluminium layered double hydroxides by 27Al solid-state NMR[J]. Solid State Nucl Magn Reson, 2009, 36(1): 19-23.[46] Ishihara S, Deguchi K, Sato H, et al. Multinuclear solid-state NMR spectroscopy of a paramagnetic layered doublehydroxide[J]. RSC Advances, 2013, 3(43): 19 857-19 860.[47] Park T J, Choi S S, Kim Y. 27Al solid-state NMR structural studies of hydrotalcite compounds calcined at different temperatures[J]. Bull Korean Chem Soc, 2009, 30(1): 149.[48] Zhan Y, Li D, Nishida K, et al. Preparation of “intelligent” pt/Ni/Mg (Al)O catalysts starting from commercial Mg–Al LDHs for daily start-up and shut-down steam reforming of methane[J]. Appl Clay Sci, 2009, 45(3): 147-154.[49] Ueno S, Yoshida K, Ebitani K, et al. Hydrotalcite catalysis: Heterogeneous epoxidation of olefins using hydrogen peroxide in the presence of nitriles[J]. Chem Commun, 1998, (3): 295-296.[50] Corma A, Navarro M, Pariente J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. J Chem Soc Chem Commun, 1994, (2): 147-148.[51] Di Cosimo J, Apestegui&a C R, Gines M J L, et al. Structural requirements and reaction pathways in condensation reactions of alcohols on Mgy AlOx catalysts[J]. J Catal, 2000, 190(2): 261-275.[52] Rao K K, Gravelle M, Valente J S, et al. Activation of Mg–Al hydrotalcite catalysts for aldol condensation reactions[J]. J Catal, 1998, 173(1): 115-121.[53] Abelló S, Medina F, Tichit D, et al. Aldol condensations over reconstructed Mg-Al hydrotalcites: Structure–activity relationships related to the rehydration method[J]. Chem Eur J, 2005, 11(2): 728-739.[54] Pfeiffer H, Lima E, Lara V, et al. Thermokinetic study of the rehydration process of a calcined MgAl-layered double hydroxide[J]. Langmuir, 2010, 26(6): 4 074-4 079.[55] Griffin J M, Clark L, Seymour V R, et al. Ionothermal 17O enrichment of oxides using microlitre quantities of labelled water[J]. Chemical Science, 2012, 3(7): 2 293-2 300.[56] Zhao L, Qi Z, Blanc F, et al. Investigating local structure in layered double hydroxides with 17O NMR spectroscopy[J]. Adv Funct Mater, 2014, 24(12): 1 696-1 702.[57] Sahoo P, Ishihara S, Yamada K, et al. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide[J]. ACS Appl Mater Interfaces, 2014, 6(20): 18 352-18 359.[58] Kozlova S G, Gabuda S P, Isupov V P, et al. Using NMR in structural studies of aluminum hydroxide intercalation compounds with lithium salts[J]. J Struct Chem, 2003, 44(2): 198-205.[59] Velu S, Suzuki K, Okazaki M, et al. Synthesis of new Sn-incorporated layered double hydroxides and their thermal evolution to mixed oxides[J]. Chem Mater, 1999, 11(8): 2 163-2 172.[60] Ay A N, Zümreoglu-Karan B, Temel A, et al. Layered double hydroxides with interlayer borate anions: A critical evaluation of synthesis methodology and ph-independent orientations in nano-galleries[J]. Appl Clay Sci, 2011, 51(3): 308-316.[61] Fujii K, Hayashi S, Kodama H. Synthesis of an alkylammonium/magnesium phyllosilicate hybrid nanocomposite consisting of a smectite-like layer and organosiloxane layers[J]. Chem Mater, 2003, 15(5): 1 189-1 197.[62] Wang G A, Wang C C, Chen C Y. The disorderly exfoliated LDHs/PMMA nanocomposite synthesized by in situ bulk polymerization[J]. Polymer, 2005, 46(14): 5 065-5 074.[63] Reinholdt M X, Babu P K, Kirkpatrick R J. Preferential adsorption of lower-charge glutamate ions on layered double hydroxides: An NMR investigation[J]. J Phys Chem C, 2009, 113(9): 3 378-3 381.[64] Pisson J, Morel-Desrosiers N, Morel J P, et al. Tracking the structural dynamics of hybrid layered double hydroxides[J]. Chem Mater, 2011, 23(6): 1 482-1 490.[65] Sasaki S, Aisawa S, Hirahara H, et al. Synthesis of p-sulfonated calix [4] arene-intercalated layered double hydroxides and their adsorption properties for organic molecules[J]. J Eur Ceram Soc, 2006, 26(4): 655-659.[66] Li Q, Kirkpatrick R J. Organic anions in layered double hydroxides: An experimental investigation of citrate hydrotalcite[J]. Am Mineral, 2007, 92(2-3): 397-402.[67] Ishihara S, Sahoo P, Deguchi K, et al. Dynamic breathing of CO2 by hydrotalcite[J]. J Am Chem Soc, 2013, 135(48): 18 040-18 043.[68] Hou X Q, Kirkpatrick R J, Yu P, et al. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds[J]. Am Mineral, 2000, 85(1): 173-180.[69] Park A Y, Kwon H, Woo A J, et al. Layered double hydroxide surface modified with (3‐aminopropyl) triethoxysilane by covalent bonding[J]. Adv Mater, 2005, 17(1): 106-109.[70] Oh J M, Choi S J, Lee G E, et al. Inorganic drug delivery nanovehicle conjugated with cancer cell specific ligand[J]. Adv Funct Mater, 2009, 19(10): 1 617-1 624.[71] Tao Q, Zhu J X, Frost R L, et al. Silylation of layered double hydroxides via a calcination-rehydration route[J]. Langmuir, 2010, 26(4): 2 769-2 773.[72] Dong L, Ge C, Qin P, et al. Immobilization and catalytic properties of candida lipolytic lipase on surface of organic intercalated and modified MgAl-LDHs[J]. Solid State Sci, 2014, 31: 8-15.[73] Hou X Q, Bish D L, Wang S L, et al. Hydration, expansion, structure, and dynamics of layered double hydroxides[J]. Am Mineral, 2003, 88(1): 167-179.[74] Kirkpatrick R J, Yu P, Hou X Q, et al. Interlayer structure, anion dynamics, and phase transitions in mixed-metal layered hydroxides: Variable temperature 35Cl NMR spectroscopy of hydrotalcite and Ca-aluminate hydrate (hydrocalumite)[J]. Am Mineral, 1999, 84(7-8): 1 186-1 190.[75] Hou, Kalinichev A G, Kirkpatrick R J. Interlayer structure and dynamics of Cl-LiAl2-layered double hydroxide: 35Cl NMR observations and molecular dynamics modeling[J]. Chem Mater, 2002, 14(5): 2 078-2 085.[76] Hou X, Kirkpatrick R J. Interlayer structure and dynamics of ClO4 – layered double hydroxides[J]. Chem Mater, 2002, 14(3): 1 195-1 200.[77] Hou X Q, Kirkpatrick R J. Solid-state 77Se NMR and xrd study of the structure and dynamics of seleno-oxyanions in hydrotalcite-like compounds[J]. Chem Mater, 2000, 12(7): 1 890-1 897.
|
[1] | 徐小俊, 王申林. 19F固体核磁共振技术研究膜蛋白相互作用的进展[J]. 波谱学杂志, 2019, 36(2): 238-251. |
[2] | 吴金泽, 辛家祥, 付晓彬, 姚叶锋. 通过宽线固体核磁共振氢谱研究半晶高分子的相结构[J]. 波谱学杂志, 2019, 36(1): 23-33. |
[3] | 葛玉玮, 刘买利, 甘哲宏, 李从刚. 质子化学位移各向异性的测量[J]. 波谱学杂志, 2018, 35(2): 255-267. |
[4] | 姜婷婷, 付晓彬, 吴金泽, 王嘉琛, 姚叶锋, 周兵. Li1.5Al0.5Ge1.5P3O12/高分子固体电解质表界面结构与分子运动的固体NMR研究[J]. 波谱学杂志, 2017, 34(4): 429-438. |
[5] | 孙毅, 陈艳可, 李建平, 赵永祥, 杨俊. 固体核磁共振中膜蛋白双交叉极化效率与动力学参数相关的定量分析[J]. 波谱学杂志, 2017, 34(3): 257-265. |
[6] | 李东北, 许帅, 喻志武. 固体核磁共振技术在骨基生物材料研究中的应用[J]. 波谱学杂志, 2017, 34(1): 115-129. |
[7] | 闫晓静, 胡炳文. SHA+脉冲序列用于g-C3N4样品15N-15N相关性的[J]. 波谱学杂志, 2016, 33(3): 361-367. |
[8] | 彭永进, 孙平川, 李宝会. PVPh/PEO共混物动力学演化过程的NMR研究[J]. 波谱学杂志, 2016, 33(2): 188-197. |
[9] | 韩明月,郑慧,胡炳文*,杨光*. 迭代软阈值法压缩感知重建谱峰较宽的二维固体谱 [J]. 波谱学杂志, 2015, 32(4): 551-562. |
[10] | 徐玮婧,刘清华,胡炳文*,陈群. 聚氧乙烯-六氟砷酸锂复合物不同结晶结构的13C谱归属[J]. 波谱学杂志, 2015, 32(3): 399-408. |
[11] | 丁丽红1,2,刘小龙2,王强2,刘文涛1,朱诚身1,郑安民2,邓风2*. 多金属氧酸盐TBA3[VW5O19]及TBA4[PVW11O40]的固体核磁共振研究[J]. 波谱学杂志, 2015, 32(3): 409-418. |
[12] | 肖婷,姚叶锋*. 半晶聚乙烯局部和整体分子链运动的固体核磁共振研究[J]. 波谱学杂志, 2015, 32(2): 208-227. |
[13] | 王粉粉 1,陈铁红1,孙平川1,2,3*. 先进固体核磁共振揭示苯硼酸-壳聚糖纳米粒子非均匀结构和相容性[J]. 波谱学杂志, 2015, 32(2): 354-362. |
[14] | 郑人豪,吴振,黄柏绮,柯志正,丁尚武*. 优化初始脉冲增强多量子跃迁及卫星跃迁魔角旋转谱灵敏度[J]. 波谱学杂志, 2015, 32(2): 363-372. |
[15] | 沈明1,5,ROOPCHAND Rabia2,MANANGA Eugene S3*,慕松柏1,5,陈群1,BOUTIS Gregory S4*,胡炳文1*. 组合脉冲宽带激发2H-平均哈密顿理论计算研究[J]. 波谱学杂志, 2015, 32(2): 373-381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||