[1] JOHNELL O, KANIS J A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures[J]. Osteoporosis Int, 2006, 17(12):1726-1733.
[2] GULLBERG B, JOHNELL O, KANIS J A. World-wide projections for hip fracture[J]. Osteoporosis Int, 1997, 7(5):407-413.
[3] MELTON L J. Hip fractures:A worldwide problem today and tomorrow[J]. Bone, 1993, 14(S):1-8.
[4] MELTON L J, KAN S H, FRYE M A, et al. Epidemiology of vertebral fractures in women[J]. Am J Epidemiol, 1989, 129(5):1000-1011.
[5] BOCK R M, MCENTIRE B J, BAL B S, et al. Surface modulation of silicon nitride ceramics for orthopaedic applications[J]. Acta Biomater, 2015, 26:318-330.
[6] WU C, ZHANG Y, ZHU Y, et al. Structure-property relationships of silk-modified mesoporous bioglass scaffolds[J]. Biomaterials, 2010, 31(13):3429-3438.
[7] VANI R, GIRIJA E K, ELAYARAJA K, et al. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate[J]. J Mater Sci Mater Med, 2009, 20(S1):43-48.
[8] ZHANG Y, VENUGOPAL J R, EL-TURKI A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering[J]. Biomaterials, 2008, 29(32):4314-4322.
[9] HUTCHENS S A, BENSON R S, EVANS B R, et al. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel[J]. Biomaterials, 2006, 27(26):4661-4670.
[10] HU Q L, LI B Q, WANG M, et al. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization:A potential material as internal fixation of bone fracture[J]. Biomaterials, 2004, 25(5):779-785.
[11] DUPONT L, GUILLON E, BOUANDA J, et al. EXAFS and XANES studies of retention of copper and lead by a lignocellulosic biomaterial[J]. Environ Sci Technol, 2002, 36(23):5062-5066.
[12] CHEN J, YU Z, ZHU P, et al. Effects of fluorine on the structure of fluorohydroxyapatite:A study by XRD, solid-state NMR and Raman spectroscopy[J]. J Mater Chem B, 2015, 3(1):34-38.
[13] LAURENCIN D, ALMORA-BARRIOS N, DE LEEUW N H, et al. Magnesium incorporation into hydroxyapatite[J]. Biomaterials, 2011, 32(7):1826-1837.
[14] CHEN P H, TSENG Y H, MOU Y, et al. Adsorption of a statherin peptide fragment on the surface of nanocrystallites of hydroxyapatite[J]. J Am Chem Soc, 2008, 130(9):2862-2868.
[15] XU J, ZHU P, GAN Z, et al. Natural-abundance 43Ca solid-state NMR spectroscopy of bone[J]. J Am Chem Soc, 2010, 132(33):11504-11509.
[16] CHO G Y, WU Y T, ACKERMAN J L. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy[J]. Science, 2003, 300(5622):1123-1127.
[17] WANG Y, VON EUW S, FERNANDES F M, et al. Water-mediated structuring of bone apatite[J]. Nat Mater, 2013, 12(12):1144-1153.
[18] HU Y Y, RAWAL A, SCHMIDT-ROHR K. Strongly bound citrate stabilizes the apatite nanocrystals in bone[J]. Proc Natl Acad Sci USA, 2010, 107(52):22425-22429.
[19] BONHOMME C, GERVAIS C, FOLLIET N, et al. 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials:Antiosteoporotic pharmaceuticals and bioactive glasses[J]. J Am Chem Soc, 2012, 134(30):12611-12628.
[20] WATTS S J, HILL R G, O'DONNELL M D, et al. Influence of magnesia on the structure and properties of bioactive glasses[J]. J Non-Cryst Solids, 2010, 356(9, 10):517-524.
[21] LAURENCIN D, WONG A, CHRZANOWSKI W, et al. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy[J]. Phys Chem Chem Phys, 2010, 12(5):1081-1091.
[22] BRAUN M, HARTMANN P, JANA C. 19F and 31P NMR spectroscopy of calcium apatites[J]. J Mater Sci Mater Med, 1995, 6(3):150-154.
[23] KOLMAS J, KURAS M, OLEDZKA E, et al. A solid-state NMR study of selenium substitution into nanocrystalline hydroxyapatite[J]. Int J Mol Sci, 2015, 16(5):11452-11464.
[24] KOLMAS J, JAKLEWICZ A, ZIMA A, et al. Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite:The effect on physicochemical properties[J]. J Mol Struct, 2011, 987(1-3):40-50.
[25] MARCHAT D, ZYMELKA M, COELHO C, et al. Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route[J]. Acta Biomater, 2013, 9(6):6992-7004.
[26] GRÖGER C, LUTZ K, BRUNNER E. NMR studies of biomineralisation[J]. Prog Nucl Magn Reson Spectrosc, 2009, 54(1):54-68.
[27] KOLODZIEJSKI W. New Techniques in solid-state NMR[M]. Berlin:Springer, 2005.
[28] GOOBES G, STAYTON P S, DROBNY G P. Solid state NMR studies of molecular recognition at protein-mineral interfaces[J]. Prog Nucl Magn Reson Spectrosc, 2007, 50(2, 3):71-85.
[29] BRADLEY J V, BRIDGLAND L N, COLYER D E, et al. NMR of biopolymer-apatite composites:Developing a model of the molecular structure of the mineral-matrix interface in calcium phosphate biomaterials[J]. Chem Mater, 2010, 22(22):6109-6116.
[30] BARHEINE S, HAYAKAWA S, OSAKA A, et al. Surface, interface, and bulk structure of borate containing apatitic biomaterials[J]. Chem Mater, 2009, 21(14):3102-3109.
[31] Cheng R H, Wu Z, Huang P C, et al. Sensitivity enhancement of multiple quantum and satellite transition magic angle spinning spectra by optimizing the initial state[J]. Chinese J Magn Reson, 2015, 32(2):363-372. 郑人豪, 吴振, 黄柏琦, 等. 优化初始脉冲增强多量子跃迁及卫星跃迁魔角旋转谱灵敏度[J]. 波谱学杂志, 2015, 32(2):363-372.
[32] Wang F F, Chen T H, Sun P C. Heterogeneous structure and miscibility of phenylboronic acid-rich chitosan nanoparticles as revealed by advanced solid-state NMR[J]. Chinese J Magn Reson, 2015, 32(2):354-362. 王粉粉, 陈铁红, 孙平川. 先进固体核磁共振揭示苯硼酸-壳聚糖纳米粒子非均匀结构和相容性[J]. 波谱学杂志, 2015, 32(2):354-362.
[33] LEGEROS R Z, LIN S, ROHANIZADEH R, et al. Biphasic calcium phosphate bioceramics:Preparation, properties and applications[J]. J Mater Sci Mater Med, 2003, 14(3):201-209.
[34] GAUTHIER O, BOULER J M, AGUADO E, et al. Macroporous biphasic calcium phosphate ceramics:Influence of macropore diameter and macroporosity percentage on bone ingrowth[J]. Biomaterials, 1998, 19(1-3):133-139.
[35] KLEIN C, DEGROOT K, DRIESSEN A A, et al. Interaction of biodegradable beta-whitlockite ceramics with bone tissue:An in vivo study[J]. Biomaterials, 1985, 6(3):189-192.
[36] GINTY F, FLYNN A, CASHMAN K D. The effect of dietary sodium intake on biochemical markers of bone metabolism in young women[J]. Brit J Nutr, 1998, 79(4):343-350.
[37] ITOH R, SUYAMA Y. Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population[J]. Am J Clin Nutr, 1996, 63(5):735-740.
[38] RUDE R K, GRUBER H E. Magnesium deficiency and osteoporosis:Animal and human observations[J]. J Nutr Biochem, 2004, 15(12):710-716.
[39] FEATHERSTONE J D B. Prevention and reversal of dental caries:Role of low level fluoride[J]. Community Dent Oral, 1999, 27(1):31-40.
[40] AIZENBERG J, BLACK A J, WHITESIDES G M. Control of crystal nucleation by patterned self-assembled monolayers[J]. Nature, 1999, 398(6727):495-498.
[41] WEINER S, ADDADI L. Design strategies in mineralized biological materials[J]. J Mater Chem, 1997, 7(5):689-702.
[42] STUPP S I, BRAUN P V. Molecular manipulation of microstructures:Biomaterials, ceramics, and semiconductors[J]. Science, 1997, 277(5330):1242-1248.
[43] CAO M, WANG Y, GUO C, et al. Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions[J]. Langmuir, 2004, 20(11):4784-4786.
[44] DONNERS J, NOLTE R J, SOMMERDIJK N. Dendrimer-based hydroxyapatite composites with remarkable materials properties[J]. Adv Mater, 2003, 15(4):313-316.
[45] SARDA S, HEUGHEBAERT M, LEBUGLE A. Influence of the type of surfactant on the formation of calcium phosphate in organized molecular systems[J]. Chem Mater, 1999, 11(10):2722-2727.
[46] HOANG Q Q, SICHERI F, HOWARD A J, et al. Bone recognition mechanism of porcine osteocalcin from crystal structure[J]. Nature, 2003, 425(6961):977-980.
[47] REES S G, SHELLIS R P, EMBERY G. Inhibition of hydroxyapatite crystal growth by bone proteoglycans and proteoglycan components[J]. Biochem Bioph Res Co, 2002, 292(3):727-733.
[48] BREKKEN R A, SAGE E H. SPARC, a matricellular protein:At the crossroads of cell-matrix communication[J]. Matrix Biol, 2001, 19(8):816-827.
[49] KNOTT L, BAILEY A J. Collagen cross-links in mineralizing tissues:A review of their chemistry, function, and clinical relevance[J]. Bone, 1998, 22(3):181-187.
[50] PROCKOP D J, KIVIRIKKO K I. Collagens:Molecular biology, diseases, and potentials for therapy[J]. Annu Rev Biochem, 1995, 64:403-434.
[51] LANDI E, TAMPIERI A, MATTIOLI-BELMONTE M, et al. Biomimetic Mg- and Mg, CO3-substituted hydroxyapatites:Synthesis characterization and in vitro behaviour[J]. J Eur Ceram Soc, 2006, 26(13):2593-2601.
[52] HEANEY R P. Role of dietary sodium in osteoporosis[J]. J Am Coll Nutr, 2006, 25(S3):271-276.
[53] WISE E R, MALTSEV S, DAVIES M E, et al. The organic-mineral interface in bone is predominantly polysaccharide[J]. Chem Mater, 2007, 19(21):5055-5057.
[54] HE G, DAHL T, VEIS A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1[J]. Nat Mater, 2003, 2(8):552-558.
[55] LANDIS W J, SONG M J, LEITH A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction[J]. J Struct Biol, 1993, 110(1):39-54.
[56] WEINER S, WAGNER H D. The material bone:Structure-mechanical function relations[J]. Annu Rev Mater Sci, 1998, 28:271-298.
[57] WEINER S, TRAUB W. Bone structure:From angstroms to microns[J]. Faseb J, 1992, 6(3):879-885.
[58] JAEGER C, GROOM N S, BOWE E A, et al. Investigation of the nature of the protein-mineral interface in bone by solid-state NMR[J]. Chem Mater, 2005, 17(12):3059-3061.
[59] BUEHLER J, CHAPPUIS P, SAFFAR J, et al. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis)[J]. Bone, 2001, 29(2):176-179.
[60] GRYNPAS M, HAMILTON E, CHEUNG R, et al. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect[J]. Bone, 1996, 18(3):253-259.
[61] ZHANG W, SHEN Y, PAN H, et al. Effects of strontium in modified biomaterials[J]. Acta Biomater, 2011, 7(2):800-808.
[62] ISAAC J, NOHRA J, LAO J, et al. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells[J]. Eur Cell Mater, 2011, 21:130-143.
[63] RAFFALT A C, ANDERSEN J E, CHRISTGAU S. Application of inductively coupled plasma-mass spectrometry (ICP-MS) and quality assurance to study the incorporation of strontium into bone, bone marrow, and teeth of dogs after one month of treatment with strontium malonate[J]. Anal Bioanal Chem, 2008, 391(6):2199-2207. |