[1] Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6 865): 813-820.
[2] Reske-Nielsen E, Lundbaek K. Pathological changes in the central and peripheral nervous system of young long-term diabetics. II. The spinal cord and peripheral nerves[J]. Diabetologia, 1968, 4(1): 34-43.
[3] Wessels a M, Simsek S, Remijnse P L, et al. Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy[J]. Diabetologia, 2006, 49(10): 2 474-2 480.
[4] Wong T Y, Mosley T H, Jr., Klein R, et al. Retinal microvascular changes and MRI signs of cerebral atrophy in healthy, middle-aged people
[J]. Neurology, 2003, 61(6): 806-811.
[5] Patton N, Aslam T, Macgillivray T, et al. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures[J]. J Anat, 2005, 206(4): 319-348.
[6] Ferguson S C, Blane A, Perros P, et al. Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia[J]. Diabetes, 2003, 52(1): 149-156.
[7] Gaudieri P A, Chen R, Greer T F, et al. Cognitive function in children with type 1 diabetes: a meta-analysis[J]. Diabetes Care, 2008, 31(9): 1 892-1 897.
[8] Shan D E, Ho D M, Chang C, et al. Hemichorea-hemiballism: an explanation for MR signal changes[J]. Am J Neuroradiol, 1998, 19(5): 863-870.
[9] Van Elderen S G C, Brandts A, Westenberg J J M, et al. Aortic stiffness is associated with cardiac function and cerebral small vessel disease in patients with type 1 diabetes mellitus: assessment by magnetic resonance imaging[J]. Eur Radiol, 2010, 20(5): 1 132-1 138.
[10] Van Elderen S G, De Roos A, De Craen a J, et al. Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up[J]. Neurology, 2010, 75(11): 997-1 002.
[11] Van Harten B, De Leeuw F E, Weinstein H C, et al. Brain imaging in patients with diabetes: a systematic review[J]. Diabetes Care, 2006, 29(11): 2 539-2 548.
[12] Ryan C M, Geckle M O, Orchard T J. Cognitive efficiency declines over time in adults with Type 1 diabetes: effects of micro- and macrovascular complications[J]. Diabetologia, 2003, 46(7): 940-948.
[13] Wessels A M, Rombouts S A, Remijnse P L, et al. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume[J]. Diabetologia, 2007, 50(8): 1 763-1 769.
[14] Brands A M, Kessels R P, Hoogma R P, et al. Cognitive performance, psychological well-being, and brain magnetic resonance imaging in older patients with type 1 diabetes[J]. Diabetes, 2006, 55(6): 1 800-1 806.
[15] Beaulieu C. The basis of anisotropic water diffusion in the nervous system——a technical review[J]. NMR Biomed, 2002, 15(7-8): 435-455.
[16] Pierpaoli C, Jezzard P, Basser P J, et al. Diffusion tensor MR imaging of the human brain[J]. Radiology, 1996, 201(3): 637-648.
[17] Alexander a L, Lee J E, Lazar M, et al. Diffusion tensor imaging of the brain[J]. Neurotherapeutics, 2007, 4(3): 316-329.
[18] Ramin S L, Tognola W A, Spotti A R. Proton magnetic resonance spectroscopy: clinical applications in patients with brain lesions[J]. Sao Paulo Med J, 2003, 121(6): 254-259.
[19] Bjartmar C, Battistuta J, Terada N, et al. N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve[J]. Ann Neurol, 2002, 51(1): 51-58.
[20] De Stefano N, Filippi M. MR spectroscopy in multiple sclerosis[J]. J Neuroimaging, 2007, 17(Suppl 1): 31S-35S.
[21] Birken D L, Oldendorf W H. N-acetyl-L-aspartic acid——a literaturereview of a compound prominent in H-1-nmr spectroscopic studies of brain[J]. Neurosci Biobehav Rev, 1989, 13(1): 23-31.
[22] Musen G, Lyoo I K, Sparks C R, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry[J]. Diabetes, 2006, 55(2): 326-333.
[23] Weinger K, Jacobson A M, Musen G, et al. The effects of type 1 diabetes on cerebral white matter[J]. Diabetologia, 2008, 51(3): 417-425.
[24] Duker A P, Espay A J. Images in clinical medicine. Hemichorea-hemiballism after diabetic ketoacidosis[J]. N Engl J Med, 2010, 363(17): e27.
[25] Schmidt R, Fazekas F, Kleinert G, et al. Magnetic-resonance-imaging signal hyperintensities in the deep and subcortical white matter-a -comparative-study between stroke patients and normal volunteers[J]. Arch Neurol, 1992, 49(8): 825-827.
[26] Kario K, Ishikawa J, Hoshide S, et al. Diabetic brain damage in hypertension: role of renin-angiotensin system[J]. Hypertension, 2005, 45(5): 887-893.
[27] Launer L J, Korf E S C, White L R, et al. Brain aging in very old men with type 2 diabetes - the honolulu-asia aging study[J]. Diabetes Care, 2006, 29(10): 2 268-2 274.
[28] Lazarus R, Prettyman R, Cherryman G. White matter lesions on magnetic resonance imaging and their relationship with vascular risk factors in memory clinic attenders[J]. Int J Geriatr Psych, 2005, 20(3): 274-279.
[29] Northam E A, Rankins D, Lin A, et al. Central nervous system function in youth with type 1 diabetes 12 years after disease onset[J]. Diabetes Care, 2009, 32(3): 445-450.
[30] Kodl C T, Franc D T, Rao J P, et al. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function[J]. Diabetes, 2008, 57(11): 3 083-3 089.
[31] Franc D T, Kodl C T, Mueller B A, et al. High connectivity between reduced cortical thickness and disrupted white matter tracts in longstanding type 1 diabetes[J]. Diabetes, 2011, 60(1): 315-319.
[32] Yau P L, Javier D, Tsui W, et al. Emotional and neutral declarative memory impairments and associated white matter microstructural abnormalities in adults with type 2 diabetes[J]. Psychiat Res, 2009, 174(3): 223-230.
[33] Francis G J, Martinez J A, Liu W Q, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy[J]. Brain, 2008, 131(Pt 12): 3 311-3 334.
[34] Mooradian A D. Central nervous system complications of diabetes mellitus——a perspective from the blood-brain barrier[J]. Brain Res Brain Res Rev, 1997, 23(3): 210-218.
[35] Ho M S, Weller N J, Ives F J, et al. Prevalence of structural central nervous system abnormalities in early-onset type 1 diabetes mellitus[J]. J Pediatr, 2008, 153(3): 385-390.
[36] Ferguson S C, Blane A, Wardlaw J, et al. Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function[J]. Diabetes Care, 2005, 28(6): 1 431-1 437.
[37] Lobnig B M, Kromeke O, Optenhostert-Porst C, et al. Hippocampal volume and cognitive performance in long-standing Type 1 diabetic patients without macrovascular complications[J]. Diabet Med, 2006, 23(1): 32-39.
[38] Wrighten S A, Piroli G G, Grillo C A, et al. A look inside the diabetic brain: Contributors to diabetes-induced brain aging[J]. Biochim Biophys Acta, 2009, 1792(5): 444-453.
[39] Sabri O, Hellwig D, Schreckenberger M, et al. Influence of diabetes mellitus on regional cerebral glucose metabolism and regional cerebral blood flow[J]. Nucl Med Commun, 2000, 21(1): 19-29.
[40] Yuen N, Anderson S E, Glaser N, et al. Cerebral blood flow and cerebral edema in rats with diabetic ketoacidosis[J]. Diabetes, 2008, 57(10): 2 588-2 594.
[41] Sarac K, Akinci A, Alkan A, et al. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus[J]. Neuroradiology, 2005, 47(7): 562-565.
[42] Heikkila O, Lundbom N, Timonen M, et al. Hyperglycaemia is associated with changes in the regional concentrations of glucose and myo-inositol within the brain[J]. Diabetologia, 2009, 52(3): 534-540.
[43] Makimattila S, Malmberg-Ceder K, Hakkinen A M, et al. Brain metabolic alterations in patients with type 1 diabetes-hyperglycemiainduced injury[J]. J Cereb Blood Flow Metab, 2004, 24(12): 1 393-1 399.
[44] Lyoo I K, Yoon S J, Musen G, et al. Altered prefrontal glutamate-glutamine-gamma-aminobutyric acid levels and relation to low cognitive performance and depressive symptoms in type 1 diabetes mellitus[J]. Arch Gen Psychiatry, 2009, 66(8): 878-887.
[45] Biessels G J, Braun K P, De Graaf R A, et al. Cerebral metabolism in streptozotocin-diabetic rats: an in vivo magnetic resonance spectroscopy study[J]. Diabetologia, 2001, 44(3): 346-353.
[46] Duarte J M, Carvalho R A, Cunha R A, et al. Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats[J]. J Neurochem, 2009, 111(2): 368-379.
[47] Pasquier F, Boulogne A, Leys D, et al. Diabetes mellitus and dementia[J]. Diabetes Metab, 2006, 32(5 Pt 1): 403-414.
[48] Van Der Flier W M, Van Straaten E C, Barkhof F, et al. Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in nondisabled elderly people: the LADIS study[J]. J Neurol Neurosurg Psychiatry, 2005, 76(11): 1 497-1 500.
[49] Verdelho A, Madureira S, Ferro J M, et al. Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study[J]. J Neurol Neurosurg Psychiatry, 2007, 78(12): 1 325-1 330.
[50] Verdelho A, Madureira S, Moleiro C, et al. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study[J]. Neurology, 2010, 75(2): 160-167.
[51] Li Z G, Mang W, Sima a A. Alzheimer-like changes in rat models of spontaneous diabetes[J]. Diabetes, 2007, 56(10): 2 650-2 650.
[52] John I M, Suzan H, Samuel S, et al. Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory[J]. Pediatric Diabetes, 2008, 9(6): 531-539.
[53] Martinez-Tellez R, Gomez-Villalobos Mde J, Flores G. Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin[J]. Brain Res, 2005, 1 048(1-2): 108-115.
[54] Ohi T, Saita K, Furukawa S, et al.Therapeutic effects of aldose reductase inhibitor on experimental diabetic neuropathy through synthesis/secretion of nerve growth factor[J]. Exp Neurol, 1998, 151(2): 215-220.
[55] Lai P H, Tien R D, Chang M H, et al. Chorea-ballismus with nonketotic hyperglycemia in primary diabetes mellitus[J]. Am J Neuroradiol, 1996, 17(6): 1 057-1 064.
[56] Tung C S, Guo Y C, Lai C L, et al. Irreversible striatal neuroimaging abnormalities secondary to prolonged, uncontrolled diabetes mellitus in the setting of progressive focal neurological symptoms[J]. Neurol Sci, 2010, 31(1): 57-60.
[57] Lin J J, Lin G Y, Shih C, et al. Presentation of striatal hyperintensity on T1-weighted MRI in patients with hemiballism-hemichorea caused by non-ketotic hyperglycemia: report of seven new cases and a review of literature[J]. J Neurol, 2001, 248(9): 750-755.
[58] Lai P H, Chen P C, Chang M H, et al. In vivo proton MR spectroscopy of chorea-ballismus in diabetes mellitus[J]. Neuroradiology, 2001, 43(7): 525-531.
[59] Altafullah I, Pascual-Leone A, Duvall K, et al. Putaminal hemorrhage accompanied by hemichorea-hemiballism[J]. Stroke, 1990, 21(7): 1 093-1 094.
[60] Abe Y, Yamamoto T, Soeda T, et al. Diabetic striatal disease: clinical presentation, neuroimaging, and pathology[J]. Intern Med, 2009, 48(13): 1 135-1 141.
[61] Dong Ji-yang(董继扬), Xu Le(徐乐), Cao Hong-ting(曹红婷), et al.A new data processing method for metabonomic and its application in a study of diabetes(代谢组学数据分析方法及在糖尿病研究中的应用)[J]. Chinese J Magn Reson(波谱学杂志), 2007, 24(4): 381-393.
[62] Mao Xuan(毛璇), Zhang Dong-juan(张冬娟), Guan You-fei(管又飞), et al. A metabonomic study of aqueous kidney extract in the mouse model of type Ⅱ diabetic nephropathy(Ⅱ型糖尿病肾病小鼠肾水提物代谢组学研究)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(4): 532-539. |