波谱学杂志 ›› 2018, Vol. 35 ›› Issue (1): 31-39.doi: 10.11938/cjmr20172578

• 研究论文 • 上一篇    下一篇

一种结合并行成像和压缩感知的快速磁共振成像新方法

黄丽洁1, 宋阳1, 赵献策2, 谢海滨1,2, 吴东梅1, 杨光1,2   

  1. 1. 华东师范大学 物理与材料科学学院, 上海市磁共振重点实验室, 上海 200062;
    2. 上海卡勒幅磁共振技术有限公司, 上海 201614
  • 收稿日期:2017-05-02 出版日期:2018-03-05 发布日期:2018-03-05
  • 通讯作者: 谢海滨,Tel:021-62233873,E-mail:hbxie@phy.ecnu.edu.cn. E-mail:hbxie@phy.ecnu.edu.cn
  • 基金资助:
    国家高技术研究发展计划(“863计划”)资助项目(2014AA123400).

A New Combination Scheme of GRAPPA and Compressed Sensing for Accelerated Magnetic Resonance Imaging

HUANG Li-jie1, SONG Yang1, ZHAO Xian-ce2, XIE Hai-bin1,2, WU Dong-mei1, YANG Guang1,2   

  1. 1. Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Material Science, East China Normal University, Shanghai 200062, China;
    2. Shanghai Colorful Magnetic Resonance Technology Co., Ltd., Shanghai 201614, China
  • Received:2017-05-02 Online:2018-03-05 Published:2018-03-05

摘要: 压缩感知(CS)技术和并行成像技术(主要是SENSE技术、GRAPPA技术等)都能通过减少k空间数据的采集量来加快磁共振成像速度,目前已有一些将两种方法相结合进一步加速磁共振成像速度的方法(例如CS-GRAPPA).本文针对数据采集和重建这两方面对现有CS-GRAPPA方法进行了改进,采集方式上采用了局部等间隔采集模板以满足GRAPPA重建的要求,并对采集模板进行随机放置以满足CS重建的要求;数据重建时,根据自动校正数据估算GRAPPA算法中欠采行的重建误差,并利用误差的大小确定在CS算法中保真的程度.不同磁共振图像重建实验的结果表明:与现有方法相比,本文方法能够更好地保留原有图像细节并有效减少伪影.

关键词: 磁共振成像(MRI), 压缩感知(CS), 并行成像, 稀疏采样

Abstract: Both compressed sensing (CS) and parallel imaging (PI) can be used to accelerate magnetic resonance imaging (MRI) by under-sampling the k space data. Several methods combining CS and PI have been proposed to further improve the scanning speed. In this paper, we proposed a new approach to combine CS and PI. We used GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) algorithm to reconstruct local under-sampled k space data, and CS to reconstruct the whole k space data for each coil. In the CS reconstruction step, we constrained that the reconstructed k space data should be assimilated to both the sampled k space data and the reconstructed k space data by GRAPPA. In addition, we designed a new sampling strategy to improve the quality of image reconstruction. In vivo imaging results demonstrated that the proposed approach could effectively remove artifacts and improve the image quality.

Key words: magnetic resonance imaging (MRI), compressed sensing (CS), parallel imaging (PI), sparse sampling

中图分类号: