[1] Lauterbur P C. Image formation by induced local interactions-examples employing nuclear magnetic resonance[J]. Nature, 1973, 242(5394): 190-191.
[2] Mansfield P, Grannell P K. NMR diffraction in solids[J]. J Phys C Solid State, 1973, 6(22): L422-L426.
[3] Belliveau J W, Kennedy D N, McKinstry R C, et al. Functional mapping of the human visual-cortex by magnetic resonance imaging[J]. Science, 1991, 254(5032): 716-719.
[4] Kwong K K, Belliveau J W, Chesler D A, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation[J]. P Natl Acad Sci USA, 1992, 89(12): 5 675-5 679.
[5] Ogawa S, Tank D W, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation-Functional brain mapping with magnetic resonance imaging[J]. P Natl Acad Sci USA, 1992, 89(13): 5 951-5 955.
[6] Bandettini P A, Jesmanowicz A, Wong E C, et al. Processing strategies for time-course data sets in functional MRI of the human brain[J]. Magn Reson Med, 1993, 30(2): 161-173.
[7] Lebihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions-Application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407.
[8] Moseley M E, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral-ischemia in cats-Comparison of diffusion-weighted and T2-weighted MRI and spectroscopy [J]. Magn Reson Med, 1990, 14(2): 330-346.
[9] Schrader G W, Litchfield J B. Moisture profiles in a model food gel during drying-Measurement using magnetic resonance imaging and evaluation of the Fickian model [J]. Dry Technol, 1992, 10(2): 295-332.
[10] Bohris A J, Goerke U, McDonald P J, et al. A broad line NMR and MRI study of water and water transport in Portland cement pastes[J]. Magn Reson Imaging, 1998, 16(5-6): 455-461.
[11] Fukushima E. Nuclear magnetic resonance as a tool to study flow[J]. Annu Rev Fluid Mech, 1999, 31: 95-123.
[12] Balcom B J, MacGregor R P, Beyea S D, et al. Single-point ramped imaging with T1 enhancement (SPRITE)[J]. J Magn Reson Ser A, 1996, 123(1): 131-134.
[13] Beyea S D, Balcom B J, Prado P J, et al. Relaxation time mapping of short T2* nuclei with single-point imaging (SPI) methods[J]. J Magn Reson, 1998, 135(1): 156-164.
[14] Prado P J, Balcom B J, Beyea S D, et al. Spatially resolved relaxometry and pore size distribution by single-point MRI methods: porous media calorimetry[J]. J Phys D-Appl Phys, 1998, 31(16): 2 040-2 050.
[15] Balcom B J, Barrita J C, Choi C, et al. Single-point magnetic resonance imaging (MRI) of cement based materials[J]. Mater Struct, 2003, 36(257): 166-182.
[16] Cano F D, Bremner T W, McGregor R P, et al. Magnetic resonance imaging of H-1, Na-23, and Cl-35 penetration in Portland cement mortar [J]. Cem Concr Res, 2002, 32(7): 1 067-1 070.
[17] Prado P J, Balcom B J, Beyea S D, et al. Concrete thawing studied by single-point ramped imaging[J]. Solid State Nucl Magn Reson, 1997, 10(1-2): 1-8.
[18] Kennedy C B, Balcom B J, Mastikhin I V. Three-dimensional magnetic resonance imaging of rigid polymeric materials using singlepoint ramped imaging with T1 enhancement (SPRITE)[J]. Can J Chem-Rev Can Chim, 1998, 76(11): 1 753-1 765.
[19] MacMillan B, Halse M, Schneider M, et al. Magnetic resonance imaging of rigid polymers at elevated temperatures with SPRITE[J]. Appl Magn Reson, 2002, 22(2): 247-256.
[20] Mastikhin I V, Balcom B J, Prado P J, et al. SPRITE MRI with prepared magnetization and centric k-space sampling[J]. J Magn Reson, 1999, 136(2): 159-168.
[21] Samoilenko A A, Artemov D Y, Sibeldina L A. Formation of sensitive layer in experiments on NMR subsurface imaging of solids[J]. JETP Lett, 1988, 47(7): 417-419.
[22] McDonald P J. Stray field magnetic resonance imaging[J]. Prog Nucl Magn Reson Spectrosc, 1997, 30: 69-99.
[23] McDonald P J, Newling B. Stray field magnetic resonance imaging[J]. Rep Prog Phys, 1998, 61(11): 1 441-1 493.
[24] Randall E W. Stray Field (STRAFI) NMR: Imaging in Large Field-Gradients∥Grant D M, Harris R K, eds. The Encyclopedia of Nuclear Magnetic Resonance[M]. Chichester: John Wiley and Sons, 2002. 50-164.
[25] Westbrook C, Kaut C. MRI in Practice[M]. Malden: Blackwell Science, 1998.
[26] Brown M A, Semelka R C. MRI: Basic Principles an Applications[M]. New York: Wiley-Liss, 1999.
[27] Edelstein W A, Hutchison J M S, Johnson G, et al. Spin warp nmr imaging and applications to human whole-body imaging[J]. Phys Med Biol, 1980, 25(4): 751-756.
[28] Mansfield P. Multi-planar image-formation using NMR spin echoes[J]. J Phys C-Solid State, 1977, 10(3): L55-L58.
[29] Stehling M K, Turner R, Mansfield P. Echo-planar imaging-Magnetic resonance imaging in a fraction of a second[J]. Science, 1991, 254(5028): 43-50.
[30] Ding X P, Tkach J, Ruggieri P, et al. Improvement of spiral MRI with the measured k-space trajectory[J]. JMRI-J Magn Reson Imaging, 1997, 7(5): 938-940.
[31] Mason G F, Harshbarger T, Hetherington H P, et al. A method to measure arbitrary k-space trajectories for rapid MR imaging[J]. Magn Reson Med, 1997, 38(3): 492-496.
[32] Callaghan P T, Eccles C D. Sensitivity and resolution in NMR imaging[J]. J Magn Reson, 1987, 71(3): 426-445.
[33] Callaghan P T, Eccles C D. Diffusion limited resolution in nuclear magnetic resonance microscopy[J]. J Magn Reson, 1988, 78(1): 1-8.
[34] Benenson W, Harris J W, Stocker H, et al. Handbook of Physics[M]. New York: Springer, 2002. 477-478.
[35] Hahn E L. Spin echoes[J]. Phys Rev, 1950, 80(4): 580-594.
[36] Powles J G, Mansfield P. Double pulse nuclear resonance transients in solids[J]. Phys Lett, 1962, 2(2): 58-59.
[37] Mansfield P, Ware D. Nuclear resonance line narrowing in solids by repeated short pulse RF irradiation[J]. Phys Lett, 1966, 22(2): 133-135.
[38] Mansfield P, Ware D. NMR spin dynamics in solids I: Artificial line narrowing and zeeman spin-spin relaxation in rotating frame[J]. Phys Rev, 1968, 168(2): 318-334.
[39] Ostroff E D, Waugh J S. Multiple spin echoes and spin locking in solids[J]. Phys Rev Lett, 1966, 16(24): 1 097-1 098.
[40] Waugh J S, Wang C H. Multiple spin echoes in dipolar solids[J]. Phys Rev, 1967, 162(2): 209-216.
[41] Carr H Y, Purcell E M. Effects of diffusion on free precession in nuclear magnetic resonance experiments[J]. Phys Rev, 1954, 94(3): 630-638.
[42] Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times[J]. Rev Sci Instrum, 1958, 29(8): 688-691.
[43] Benson T B, McDonald P J. Profile amplitue-modulation in stray-field magnetic resonance imaging[J]. J Magn Reson Ser A, 1995, 112(1): 17-23.
[44] Benson T B, McDonald P J. The application of spin echoes to stray-field imaging[J]. J Magn Reson Ser B, 1995, 109(3): 314-317.
[45] Randall E W. A convenient method for calibration of the pulse-length in high field-gradients using Hahn echo-trains[J]. Solid State Nucl Magn Reson, 1997, 8(3): 179-183.
[46] Mallett M J D, Halse M R, Strange J H. Stray field imaging by magnetic field sweep[J]. J Magn Reson, 1998, 132(1): 172-175.
[47] Glover P M, Aptaker P S, Bowler J R, et al. A novel high-gradient permanent magnet for the profiling of planar films and coatings[J]. J Magn Reson, 1999, 139(1): 90-97.
[48] Glover P M, McDonald P J, Newling B. Stray-field imaging of planar films using a novel surface coil[J]. J Magn Reson, 1997, 126(2): 207-212.
[49] Eidmann G, Savelsberg R, Blumler P, et al. The NMR MOUSE, a mobile universal surface explorer [J]. J Magn Reson Ser A, 1996, 122(1): 104-109.
[50] Bennett G, Gorce J P, Keddie J L, et al. Magnetic resonance profiling studies of the drying of film-forming aqueous dispersions and glue layers[J]. Magn Reson Imaging, 2003, 21(3-4): 235-241.
[51] Hughes P D M, McDonald P J, Rhodes N P, et al. A stray field magnetic resonance imaging study of the drying of sodium silicate films[J]. J Colloid Interface Sci, 1996, 177(1): 208-213.
[52] Ciampi E, McDonald P J. Skin formation and water distribution in semicrystalline polymer layers cast from solution: A magnetic resonance imaging study[J]. Macromolecules, 2003, 36(22): 8 398-8 405.
[53] Ekanayake P, McDonald P J, Keddie J L. An experimental test of the scaling prediction for the spatial distribution of water during the drying of colloidal films[J]. Eur Phys J-Spec Top, 2009, 166: 21-27.
[54] Hellgren A C, Wallin M, Weissenborn P K, et al. New techniques for determining the extent of crosslinking in coatings[J]. Prog Org Coat, 2001, 43(1-3): 85-98.
[55] Mallegol J, Barry A M, Ciampi E, et al. Influence of drier combination on through-drying in waterborne alkyd emulsion coatings observed with magnetic resonance profiling [J]. J Coating Technol, 2002, 74(933): 113-124.
[56] Mallegol J, Bennett G, McDonald P J, et al. Skin development during the film formation of waterborne acrylic pressure-sensitive adhesives containing tackifying resin[J]. J Adhesion, 2006, 82(3): 217-238.
[57] Mallegol J, Gorce J P, Dupont O, et al. Origins and effects of a surfactant excess near the surface of waterborne acrylic pressuresensitive adhesives[J]. Langmuir, 2002, 18(11): 4 478-4 487.
[58] Rodriguez R, Alarcon C D, Ekanayake P, et al. Correlation of silicone incorporation into hybrid acrylic coatings with the resulting hydrophobic and thermal properties[J]. Macromolecules, 2008, 41(22): 8 537-8 546.
[59] Wallin M, Glover P M, Hellgren A C, et al. Depth profiles of polymer mobility during the film formation of a latex dispersion undergoing photoinitiated cross-linking[J]. Macromolecules, 2000, 33(22): 8 443-8 452.
[60] Black S, Lane D M, McDonald P J, et al. The visualization of the ingress of polymer treatment coatings into porous building-materials by stray-field magnetic resonance imaging[J]. J Mater Sci Lett, 1995, 14(17): 1 175-1 177.
[61] Dias M, Hadgraft J, Glover P M, et al. Stray field magnetic resonance imaging: a preliminary study of skin hydration[J]. J Phys D-Appl Phys, 2003, 36(4): 364-368.
[62] Hopkinson I, Jones R A L, Black S, et al. Fickian and case II diffusion of water into amylose: a stray field NMR study[J]. Carbohyd Polym, 1997, 34(1-2): 39-47.
[63] Hopkinson I, Jones R A L, McDonald P J, et al. Water ingress into starch and sucrose : starch systems[J]. Polymer, 2001, 42(11): 4 947-4 956.
[64] Perry K L, McDonald P J, Randall E W, et al. Stray field magnetic-resonance-imaging of the diffusion of acetone into poly(vinyl chloride)[J]. Polymer, 1994, 35(13): 2 744-2 748.
[65] Lai C M, Lauterbur P C. A gradient control device for compete 3-dimensional nuclear magnetic resonance zeugmatographic imaging[J]. J Phys E-Sci Instrum, 1980, 13(7): 747-750.
[66] Godward J, Ciampi E, Cifelli M, et al. Multidimensional imaging using combined stray field and pulsed gradients[J]. J Magn Reson, 2002, 155(1): 92-99.
[67] Baltisberger J H, Hediger S, Emsley L. Multi-dimensional magnetic resonance imaging in a stray magnetic field[J]. J Magn Reson, 2005, 172(1): 79-84.
[68] Wong A, Sakellariou D. Contrast STRAFI-MAS imaging[J]. J Magn Reson, 2010, 206(2): 264-268.
[69] Wong A, Sakellariou D. Two-and three-dimensional multinuclear stray-field imaging of rotating samples with magic-angle spinning (STRAFI-MAS): From bio to inorganic materials[J]. J Magn Reson Imaging, 2010, 32(2): 418-423.
[70] Mills P J, Palmstrom C J, Kramer E J. Concentration profiles of non-fickian diffusants in glassy-polymers by Rutherford backscattering spectroscopy[J]. J Mater Sci, 1986, 21(5): 1 479-1 486.
[71] Thomas N L, Windle A H. A theory of case II: Diffusion[J]. Polymer, 1982, 23(4): 529-542.
[72] Weisenberger L A, Koenig J L. NMR imaging of case II: Diffusion in glassy polymers[J]. J Polym Sci Pol Lett, 1989, 27(2): 55-57.
[73] McDonald P J, Godward J, Sackin R, et al. Surface flux limited diffusion of solvent into polymer[J]. Macromolecules, 2001, 34(4): 1 048-1 057.
[74] Nunes T G, Guillot G, Bordado J M. Low, stray-field imaging and spectroscopic studies of the sodium polyacrylate water uptake[J]. Polymer, 2000, 41(12): 4 643-4 649.
[75] Lane D M, McDonald P J. The visualization of spatial gradients in polymer and solvent dynamics for mixed solvents ingressing poly(methyl methacrylate) using stray field magnetic resonance imaging[J]. Polymer, 1997, 38(10): 2 329-2 335.
[76] Hunter G, Lane D M, Scrimgeour S N, et al. Measurement of the diffusion of liquids into dental restorative resins by stray-field nuclear magnetic resonance imaging (STRAFI)[J]. Dent Mater, 2003, 19(7): 632-638.
[77] Goerke U, Chamberlain A H L, Crilly E A, et al. Model for water transport into powdered xanthan combining gel swelling and vapor diffusion[J]. Phys Rev E, 2000, 62(4): 5 353-5 359.
[78] Ciampi E, Goerke U, McDonald P J, et al. Spatially-resolved magnetic resonance study of the dissolution interface between soaps and water[J]. J Phys D-Appl Phys, 2002, 35(11): 1 271-1 281.
[79] Kinchesh P, Randall E W, Zick K. Magnetic susceptibility effects in imaging-distortion-free images of plant tissue in soil[J]. Magn Reson Imaging, 1994, 12(2): 305-307.
[80] Randall E W, Mahieu N, Ivanova G I. NMR studies of soil, soil organic matter and nutrients: spectroscopy and imaging[J]. Geoderma, 1997, 80(3-4): 307-325.
[81] Preston A R, Bird N R A, Kinchesh P, et al. STRAFI-NMR studies of water transport in soil[J]. Magn Reson Imaging, 2001, 19(3-4): 561-563.
[82] Kinchesh P, Samoilenko A A, Preston A R, et al. Stray field nuclear magnetic resonance of soil water: Development of a new, large probe and preliminary results[J]. J Environ Qual, 2002, 31(2): 494-499.
[83] Bird N R A, Preston A R, Randall E W, et al. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance[J]. Eur J Soil Sci, 2005, 56(1): 135-143.
[84] Baumann M A, Doll G M, Zick K. Stray-field imaging (STRAFI) of teeth[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1993, 75(4): 517-522.
[85] Lloyd C H, Scrimgeour S N, Hunter G, et al. Solid state spatially resolved H-1 and F-19 nuclear magnetic resonance spectroscopy of dental materials by stray-field imaging[J]. J Mater Sci-Mater Med, 1999, 10(6): 369-373.
[86] Nunes T G, Pires R, Perdigao J, et al. The study of a commercial dental resin by H-1 stray-field magnetic resonance imaging[J]. Polymer, 2001, 42(19): 8 051-8 054.
[87] Nunes T G, Guillot G, Pereira S G, et al. H-1 stray-field long spin-echo trains and MRI: novel studies on the photopolymerization of a commercial dental resin[J]. J Phys D-Appl Phys, 2002, 35(11): 1 251-1 257.
[88] Pereira S G, Nunes T G, Kalachandra S. Low viscosity dimethacrylate comonomer compositions[Bis-GMA and CH(3)Bis-GMA] for novel dental composites; analysis of the network by stray-field MRI, solid-state NMR and DSC & FTIR[J]. Biomaterials, 2002, 23(18): 3 799-3 806.
[89] Pereira S G, Reis N, Nunes T G. Spatially resolved studies on the photopolymerization of dimethacrylate monomers[J]. Polymer, 2005, 46(19): 8 034-8 044.
[90] Nunes T G, Garcia F C P, Osorio R, et al. Polymerization efficacy of simplified adhesive systems studied by NMR and MRI techniques[J]. Dent Mater, 2006, 22(10): 963-972.
[91] Pires R A, Fernandez C, Nunes T G. Structural and spatially resolved studies on the hardening of a commercial resin-modified glassionomer cement[J]. J Mater Sci-Mater Med, 2007, 18(5): 787-796.
[92] Nunes T G, Pereira S G, Kalachandra S. Effect of treated filler loading on the photopolymerization inhibition and shrinkage of a dimethacrylate matrix[J]. J Mater Sci-Mater Med, 2008, 19(5): 1 881-1 889.
[93] Pereira S G, Fulgencio R, Nunes T G, et al. Effect of curing protocol on the polymerization of dual-cured resin cements[J]. Dent Mater, 2010, 26(7): 710-718.
[94] Lloyd C H, Scrimgeour S N, Lane D M, et al. The application of magnetic resonance microimaging to the visible light curing of dental resins-3. Stray-field nuclear magnetic resonance imaging (STRAFI) [J]. Dent Mater, 2001, 17(5): 381-387.
[95] Randall E W. H-1 and F-19 magnetic resonance imaging of solid paramagnetic compounds using large magnetic field gradients and Hahn echoes[J]. Solid State Nucl Magn Reson, 1997, 8(3): 173-178.
[96] Randall E W, Samoilenko A A, Fu R Q. STRAFI imaging of paramagnetic solids: P-31 paramagnetic displacements[J]. Magn Res Chem, 2002, 40(1): 93-95.
[97] Randall E W, Samoilenko A A, Nunes T. NMR imaging of paramagnetic solids in the high-field gradient approximation with the STRAFI method[J]. J Magn Reson Ser A, 1995, 116(1): 122-124.
[98] Pires R, Nunes T G, Abrahams I, et al. Stray-field imaging and multinuclear magnetic resonance spectroscopy studies on the setting of a commercial glass-ionomer cement[J]. J Mater Sci-Mater Med, 2004, 15(3): 201-208.
[99] Randall E W, Samoilenko A A, Nunes T. Simultaneous H-1 and F-19 stray-field imaging in solids and liquids[J]. J Magn Reson Ser A, 1995, 117(2): 317-319.
[100] Gillies D G, Newling B, Randall E W. Phosporus-31 solid-state NMR in highfield gradients: Prospects for imaging bone using the long echo-train summation technique (LETS) [J]. J Magn Reson, 2001, 151(2): 235-241.
[101] Michal C A, Tycko R. Stray-field NMR imaging and wavelength dependence of optically pumped nuclear spin polarization in InP[J]. Phys Rev B, 1999, 60(12): 8 672-8 679.
[102] Bodart P, Nunes T, Randall E W. Stray-field imaging of quadrupolar nuclei of half integer spin in solids[J]. Solid State Nucl Magn Reson, 1997, 8(4): 257-263.
[103] Randall E W, Samoilenko A A, Fu R Q. Hahn-echoes from N-14 in solids by the stray-field method: prospects for imaging using Long Echo-Train Summation[J]. Solid State Nucl Magn Reson, 1999, 14(3-4): 173-179.
[104] Garrido L, Sampayo J. Stray-field nuclear magnetic resonance imaging in microgravity conditions[J]. J Appl Phys, 2008, 103(5): 056105-056101 - 056105-056103.
[105] Garrido L, Sampayo J. Proton magnetic resonance imaging of specimens in simulated microgravity[J]. Microgravity Sci Tec, 2009, 21(4): 305-310.
[106] White R J, Averner M. Humans in space[J]. Nature, 2001, 409(6823): 1 115-1 118.
[107] Barbic M, Scherer A. Stray field magnetic resonance tomography using ferromagnetic spheres[J]. J Magn Reson, 2006, 181(2): 223-228.
[108] Sidles J A. Noninductive detection of single proton magnetic resonance[J]. Appl Phys Lett, 1991, 58(24): 2 854-2 856.
[109] von Ardenne M. The scanning electron microscope[J]. Z Phys, 1938, 109(9-10): 553-572.
[110] Read N D, Jeffree C E. Low temperature scanning electron microscopy in biology[J]. J Microsc, 1991, 161: 59-72.
[111] Joy D C, Pawley J B. High-resolution scanning electron-microscopy[J]. Ultramicroscopy, 1992, 47(1-3): 80-100.
[112] Newbury D E, Williams D B. The electron microscope: The materials characterization tool of the millennium[J]. Acta Mater, 2000, 48(1): 323-346.
[113] French R D, Richman M H. Transverse sectioning of field ion microscope specimens for transmission electron microscopy[J]. ASM Trans Q, 1968, 61(1): 190-192.
[114] Phillipp F. Advances in high-resolution transmission electron microscopy[J]. Mater T Jim, 1998, 39(9): 888-902.
[115] Fan G Y, Ellisman M H. Digital imaging in transmission electron microscopy [J]. J Microsc-Oxford, 2000, 200: 1-13.
[116] Libera M R, Egerton R F. Advances in the transmission electron microscopy of polymers[J]. Polym Rev, 2010, 50(3): 321-339.
[117] Fu R, Brey W W, Shetty K, et al. Ultra-wide bore 900 MHz high-resolution NMR at the national high magnetic field laboratory[J]. J Magn Reson, 2005, 177(1): 1-8.
[118] Gruetter R, Weisdorf S A, Rajanayagan V, et al. Resolution improvements in in vivo H-1 NMR spectra with increased magnetic field strength[J]. J Magn Reson, 1998, 135(1): 260-264.
[119] Norris D G. High field human imaging[J]. J Magn Reson Imaging, 2003, 18(5): 519-529.
[120] Hoult D I, Richards R E. Signal-to-noise ratio of nuclear magnetic-resonance experiment[J]. J Magn Reson, 1976, 24(1): 71-85.
[121] Lipton A S, Sears J A, Ellis P D. A general strategy for the NMR observation of half-integer quadrupolar nuclei in dilute environments[J]. J Magn Reson, 2001, 151(1): 48-59.
[122] Nelson J H. Nuclear Magnetic Resonance Spectroscopy[M]. Upper Saddle River: Prentice Hall, 2003.
[123] Kovacs H, Moskau D, Spraul M. Cryogenically cooled probes——a leap in NMR technology[J]. Prog Nucl Magn Reson Spectrosc, 2005, 46(2-3): 131-155.
[124] Styles P, Soffe N F, Scott C A, et al. A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium[J]. J Magn Reson, 1984, 60(3): 397-404.
[125] Bowers C R, Weitekamp D P. para-Hydrogen and synthesis allow dramatically enhanced nuclear alignment[J]. J Amer Chem Soc, 1987, 109(18): 5 541-5 542.
[126] Eisenschmid T C, Kirss R U, Deutsch P P, et al. para-Hydrogen induced polarization in hydrogenation reactions[J]. J Amer Chem Soc, 1987, 109(26): 8 089-8 091.
[127] Pravica M G, Weitekamp D P. Net NMR alignment by adiabatic transport of para-hydrogen addition-products to high magnetic field[J]. Chem Phys Lett, 1988, 145(4): 255-258.
[128] Brossel J, Kastler A. La detection de la resonance magnetique des niveaux excites - l’effect de depolarisation des radiations de resonance optique et de fluorescence[J]. CR Hebd Acad Sci, 1949, 229(23): 1 213-1 215.
[129] Balling L C, Pipkin F M, Hanson R J. Frequency shifts in spin-exchange optical pumping experiments[J]. Phys Rev A-Gen Phys, 1964, 133(3A): A607-A626.
[130] Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei[J]. Rev Mod Phys, 1997, 69(2): 629-642.
[131] Dupontro.J, Leduc M, Laloe F. Contribution to theory of optical-pumping in 3He by metastability exchange. 1[J]. J Phys-Paris, 1973, 34(11-1): 961-976.
[132] Dupontro.J, Leduc M, Laloe F. Contribution to theory of optical-pumping in 3He by metastability exchange. 2[J]. J Phys-Paris, 1973, 34(11-1): 977-987.
[133] Abragam A, Goldman M. Principles of dynamic nuclear-polarization[J]. Rep Prog Phys, 1978, 41(3): 395-467. |